On appelle risque alpha le risque de conclure à l'existence d'une différence qui n'existe pas en réalité: en thérapeutique, cela revient à considérer efficace un traitement qui ne l'est pas.
Ce risque alpha est fixé a priori lorsqu'on construit les tests statistiques. Par convention, on le fixe à 5% bien que cette valeur arbitraire soit discutable. Ainsi, on a 5% de risque de rejeter H0 si elle est vraie. Ex : on suppose que la kinésithérapie est efficace alors qu'elle ne l'est pas.
C'est le risque de ne pas mettre en évidence une différence qui existe, donc de ne pas montrer à tort que le traitement étudié est plus efficace alors qu'il l'est.
Nous appelons risque de première espèce du test associé à la loi L ∈ L 0 le nombre : α ψ ( L ) = E L [ ψ ( X ∙ ) ] = P L ( ψ ( X ∙ ) = 1 ) . Nous appelons seuil de signification du test le plus petit nombre α ∈ ] 0 ; 1 [ tel que : α ψ ( L ) ≤ α , ∀ L ∈ L 0 .
Ce coefficient se calcule comme le ratio de la covariance entre la rentabilité d'un portefeuille (Rp) et celle du marché (Rm), par la variance de la rentabilité implicite du marché (Rm). Sa formule est donc : beta = (Cov(Rp, Rm))/Var(Rm).
Plus le bêta est élevé est plus la valeur est sensible au mouvement de son marché de référence. Exemple : si une valeur a un bêta de 1,5 % et que le marché perd 1 %, elle recule de 1,5 %. À l'inverse, si une valeur à un bêta de 0,8 %, elle ne lâche que 0,8 % si le marché tombe de 1 %.
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage. Cette hypothèse est formulée dans le but d'être rejetée.
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
L'incertitude statistique est "le caractère stochastique ou l'erreur provenant de diverses sources, tels qu'ils sont décrits par la méthodologie statistique". La consultation technique définit le risque comme "la probabilité que survienne quelque chose de fâcheux".
Vérifier que les bons traitements aient bien été prescrits au patient à chaque étape du parcours de soins, pour éviter toute erreur médicamenteuse. La conciliation est particulièrement utile lorsque le patient entre ou sort de l'hôpital, car il n'y est pas suivi par les mêmes médecins qu'au quotidien.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
l'ACP est utilisé sur un tableau de données où toutes les variables sur tous les individus sont numériques. L'AFC, elle, s'utilise avec des variables qualitatives qui possèdent deux ou plus de deux modalités. L'AFC offre une visualisation en deux dimensions des tableaux de contingence.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Vous voulez calculer la valeur de p du test z. La valeur ainsi obtenue est la probabilité d'observer une valeur aléatoire inférieure à la statistique du test, soit : P(ST inférieure à -1,785) = 0,0371. Ainsi, la valeur de p est 0,0371.
Vous utilisez un test du khi-deux pour tester des hypothèses afin de déterminer si les données sont conformes aux attentes. L'idée de base qui sous-tend le test est de comparer les valeurs observées dans vos données aux valeurs attendues si l'hypothèse nulle est vraie.
S'il génère une valeur p inférieure ou égale au niveau de signification, le résultat est considéré comme statistiquement significatif (et permet de rejeter l'hypothèse nulle). Cela est généralement écrit sous la forme suivante : p≤0,05.
P(A) = 1/4 que B soit réalisé ou non. Attention, on calcule bien la probabilité de A; B est la condition. On peut, à la lumière de cette nouvelle notion, redéfinir la notion d'événements indépendants : Deux événements A et B sont indépendants quand P(A si B)
La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées. À l'inverse, plus les valeurs sont regroupées autour de la moyenne, plus l'écart type est faible.