fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Sur une droite graduée, l'abscisse d'un point est le nombre qui permet de repérer la position de ce point sur la droite. Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe horizontal. L'autre nombre est l'ordonnée.
Dans plusieurs religions, l'ordination (du latin ordinatio, « intégration dans un ordo », c'est-à-dire dans un corps constitué ») est un acte par lequel une personne devient membre du clergé ou, si elle en est déjà membre, gravit la hiérarchie de ce clergé.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1. Donc d = 1.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Graphiquement, elle exprime la variation verticale de la droite pour un déplacement horizontal d'une unité positive. L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y.
L'ordonnée à l'origine ou la valeur initiale (b)
Dans un graphique, l'ordonnée à l'origine correspond au point d'intersection entre la droite et l'axe des ordonnées (l'axe y ).
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Lire les coordonnées du point
Le point A est associé à 2 nombres relatifs (2 et -3) qui sont ses coordonnées: Le 1er nombre (2) est l'abscisse: il indique la position sur l'axe horizontal. Le 2e nombre (-3) est l'ordonnée: il indique la position sur l'axe vertical.
La messe d'ordination se déroule le plus souvent dans la cathédrale. Elle est présidée par l'évêque en présence du Peuple de Dieu. Ceux qui sont ordonnés sont ordonnés comme serviteurs – on dit : comme « ministres » – pour le Peuple de Dieu. Il est donc bon que le Peuple de Dieu soit présent.
Au début de la cérémonie, le diocèse est présenté, puis le futur évêque. Deux prêtres assistent le futur évêque, dont l'un demande à l'archevêque qu'on ordonne le futur évêque, pour la charge de l'épiscopat.
Depuis les origines de l'Eglise, on reconnaît 3 degrés de participation au sacrement de l'ordre : l'épiscopat, le presbytérat, et le diaconat.
L'axe vertical d'un plan cartésien se nomme l'axe des ordonnées, ou l'axe des y . Cet axe gradué est orienté du bas vers le haut du plan cartésien. On y indique la valeur de la variable dépendante dans une relation entre deux variables.
Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
L'abscisse d'un point correspond au nombre d'unités de graduation entre l'origine (O) et le point. Tu peux donc déterminer l'abscisse d'un point en comptant les unités de graduation à partir de l'origine. Il y a 2 unités de graduation entre l'origine et le point C. Le point C a pour abscisse 2, on note C(2).
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
Propriété : L'équation a x + b y + c = 0 avec a ≠ 0 ou b ≠ 0 est l'équation d'une droite d et, réciproquement, toute droite d a une équation du type a x + b y + c = 0.
La pente est l'inclinaison que présente la terrasse. Celle-ci se calcule comme suit : Différence de hauteur en cm divisée par la longueur du parcours en cm. En multipliant cette valeur par 100, on obtient la pente en pourcentage.
* L'ordonnée à l'origine d'une fonction affine est l'image de 0 par cette fonction, soit : b = f (0) . Démonstration : évidente en calculant l'image de 0. f x = 2 x − 3 . * 2ème cas : on connaît un nombre et son image 1ère méthode : lecture graphique Soit la fonction g définie par sa représentation graphique.
On connaît l'équation de la droite
Soit ( O , ı → , ȷ → ) un repère du plan et une droite d'équation a x + b y = c , où , et sont des nombres réels donnés. Alors les vecteurs u → ( − b a ) et u ′ → ( b − a ) et tout vecteur qui leur est colinéaire, sont des vecteurs directeurs de la droite .
Une racine est l'abscisse du point d'intersection du graphe avec l'axe OX. Pour trouver les racines, il faut donc résoudre l'équation f(x)=0. Définition - On appelle ordonnée à l'origine d'une fonction f le nombre f(0) (pour autant que la fonction soit définie en x=0).
L'équation y=mx+p s'appelle équation réduite de la droite d. Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.