µ = 0 et σ = 1 : loi normale centrée/réduite. µ = 0 et σ = 1 : loi normale centrée/réduite. Pour la tracer `a la calculatrice/ordinateur, y = 1 σ√2π exp ( − (x − µ)2 2σ2 ) .
Si une v.a. suit une loi normale N ( μ ; σ 2 ) , alors l'espérance de vaut E ( X ) = μ et sa variance vaut ² V ( x ) = σ ² et son écart-type ² σ ( X ) = σ ² .
avec μ1 + μ2 = μ et σ1 + σ2 = σ. Autrement dit, si la somme de deux variables aléatoires indépendantes est normale, alors les deux variables sont de lois normales. (ce théorème est équivalent au théorème central limite).
La fonction de densité de probabilités de la loi normale a la forme d'une courbe en cloche symétrique. la moyenne et la médiane sont égales ; la courbe est centrée sur la moyenne. L'axe des abscisses est une asymptote, σ représente la différence des abscisses entre le sommet de la courbe et le point d'inflexion.
Cette formule s'énonce ainsi : la variance est égale à l'espérance du carré de X moins le carré de l'espérance de X.
L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
écart type n. m. Définition : Mesure de la dispersion d'une série d'observations statistiques par rapport à leur moyenne, qui s'obtient en extrayant la racine carrée de la variance.
Si le signe de Z est positif cela signifie que l'on se situe à 2.5 σ à droite de la moyenne. Si on lit la valeur sur la table correspondant à 2.5 sur la deuxième page, on trouvera une probabilité de 0.9938. La valeur de 0.9938 correspond à la probabilité associée à toutes les valeurs inférieures à 25.
Le TCL énonce que les moyennes des moyennes d'un grand nombre d'échantillons suivent une loi normale, même si ces échantillons suivent individuellement une autre loi de probabilité. En statistique inférentielle, ce théorème qui permet le calcul des intervalles de confiance autour des estimateurs.
La courbe de Gauss est connue aussi sous le nom de « courbe en cloche » ou encore de « courbe de la loi normale ». Elle permet de représenter graphiquement la distribution d'une série et en particulier la densité de mesures d'une série. Elle se base sur les calculs de l'espérance et de l'écart-type de la série.
La règle des trois sigmas exprime une heuristique fréquemment utilisée : la plupart des valeurs se situent à moins de trois fois l'écart-type de la moyenne. Pour de nombreuses applications pratiques, ce pourcentage de 99,7 % peut être considéré comme une quasi-certitude.
Le premier membre représente la somme des carrés de chaque mesure. Le second membre correspond au total de toutes le mesures. Ce total est élevé au carré puis divisé par le nombre de mesures.
La loi de Poisson est aussi appelé la LOI des évenements rares. La loi de Poisson se définit par une formule assez compliquée. E[X] = λ σ (X) = √ λ. C'est la seule LOI connue qui ait toujours son espérance égale à sa variance.
La loi normale est la loi statistique la plus répandue et la plus utile. Elle représente beaucoup de phénomènes aléatoires. De plus, de nombreuses autres lois statistiques peuvent être approchées par la loi normale, tout spécialement dans le cas des grands échantillons.
On construit alors une nouvelle variable: Z = X − µ σ Alors X ∼ N(µ; σ) est équivalent à Z ∼ N(0; 1). Rappel: on utilisera toujours la lettre Z pour désigner une variable aléatoire de loi normale centrée et réduite. En particulier: si X ∼ N(µ; σ), la moyenne de la variable X est m(X) = µ l'écart-type de X est s(X) = σ.
Le théorème de Bayes est utilisé dans l'inférence statistique pour mettre à jour ou actualiser les estimations d'une probabilité ou d'un paramètre quelconque, à partir des observations et des lois de probabilité de ces observations. Il y a une version discrète et une version continue du théorème.
On considère qu'une très bonne approximation de la loi binomiale B(n,p) B ( n , p ) est la loi normale N(np,np(1−p)) N ( n p , n p ( 1 − p ) ) lorsque n≥30, np≥5 et n(1−p)≥5 n ≥ 30 , n p ≥ 5 et n ( 1 − p ) ≥ 5 (autrement dit, n doit être assez grand, et p ne pas être trop proche de 0 ou 1).
L'espérance et la variance d'une variable aléatoire X qui suit une loi binomiale de paramètres n et p sont obtenues grâce aux formules E(X)=np et V(X)=np(1−p).
Application : La loi de Student intervient dans les tests de comparaison de deux espérances en raison de la propriété fondamentale suivante : si X1,...,Xn sont des variables aléatoires normales indépendantes de même espérance m et de même variance, si est la variable aléatoire qui estime l'espérance et si est la ...
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne. Il se note en général avec la lettre grecque σ (« sigma »), d'après l'appellation standard deviation en anglais.
L'écart type, habituellement noté s lorsqu'on étudie un échantillon et σ lorsqu'on étudie une population, est défini comme étant une mesure de dispersion des données autour de la moyenne.
En divisant par N-1, on obtient un estimateur (ou une estimation) de la variance de la population, à partir de l'échantillon, supposé pris au hasard. On appelle cet estimateur la "variance d'échantillon" (d' et non de l' - signification différente).