En fait, on a une méthode générale pour déterminer le coefficient directeur d'une fonction affine : c'est le quotient de la différence des ordonnées par la différence des abscisses correspondantes. Soit une fonction f affine et prenons 2 nombres différents x1 et x2.
Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
L'équation réduite d'une droite de coefficient directeur m est de la forme y = mx + p où p est l'ordonnée à l'origine. Comme A appartient à T, on remplace x et y par les coordonnées de A ; on obtient 1 = 2 × 1 + p.
2. Pour trouver une équation de droite, dont on connait deux points, on calcule le coefficient directeur m de cette droite. Ensuite, sachant que y=m. x+p, alors il ne reste plus qu'à remplacer dans cette équation m par le résultat que l'on a trouvé, et x et y par les coordonnées d'un point appartenant à cette droite.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
MÉTHODE – Calcul du coefficient de proportionnalité Pour passer des valeurs d'une grandeur aux valeurs d'une autre, on peut utiliser le coefficient de proportionnalité. Pour trouver ce coefficient, il suffit d'une valeur de la 1re grandeur et de la valeur de la 2e qui correspond. On divise la 2e par la 1re.
Si une fonction f est affine, alors on peut l'écrire sous la forme f(x)=ax+b, où a et b sont deux nombres réels. La représentation graphique de cette fonction est une droite. Le nombre "a" est le coefficient directeur de cette droite. Si a>0 alors cette fonction est croissante.
Exemple : Le triangle DEF est une réduction du triangle ABC. Calculer DE et EF. Le coefficient de réduction est égal à DF AC = 1, 8 3, 6 = 0, 5. Donc, DE = 0, 5 × AB = 0, 5 × 2=1cm, et EF = 0, 5 × BC = 0, 5 × 4=2cm.
donc A/c s'exprime en L/mol.
le coefficient multiplicateur associé à une augmentation est : k = 1 + t où t est le taux d'augmentation (ex : 1,35 = 1 + 0,35), et valeur finale = valeur initiale * k.
Si on connaît les coordonnées (a ; b) et (c ; d) de deux points d'une droite, on peut calculer son coefficient directeur m. On peut ensuite écrire immédiatement qu'une équation de cette droite est y - b = m(x - a).
Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d vérifient y = ax + b. La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b.
Quel est le coefficient directeur d'une droite verticale ? Si une droite est verticale alors son coefficient directeur est infini ∞ .
Une fonction affine est une fonction , définie sur , qui peut s'écrire sous la forme , avec a et b deux réels. La représentation graphique d'une fonction affine est une droite. Si a est positif, alors f est croissante sur . Si a est négatif, alors f est décroissante sur .
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
Si la droite (D) passe par deux points A(xA;yA) et B(xB;yB) et si xA est différent de xB, alors, on peut calculer le coefficient directeur de (D): a=(yB-yA)/(xB-xA). Soit (D) : ax+by+c=0 [Lire: la droite (D) d'équation cartésienne ax+by+c=0].
Soient A(xA; yA) et B(xB; yB) deux points d'une droite D non verticale, le coefficient directeur (ou la pente) de cette droite se calcule grâce à la formule : m = yB − yA xB − xA .
Une fonction f est affine si on peut déterminer deux réels m et p tels que, pour tout x∈R,f(x)=mx+p. 2. Une fonction n'est pas affine lorsque le taux d'accroissement n'est pas constant. Pour tout réel x,f(x)=1×x+1 donc f est affine avec m=1 et p=1.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
La valeur la plus simple à trouver est celle de "b" car, comme son nom l'indique, elle correspond à l'ordonnée à l'origine, il suffit donc de repérer sur le graphique le point d'intersection entre la droite et l'axe des ordonnées: l'ordonnée de ce point correspond à "b".
Calculer le coefficient de proportionnalité
La 1ère technique consiste à diviser le nombre en bas par le nombre en haut. Le nombre en bas (40) divisé par le nombre en haut (5) donne 8. Le coefficient de proportionnalité est 8.