Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
On calcule le discriminant Δ = b2 – 4ac de la fonction polynôme f définie par f(x) = ax2 + bx + c. Étudier le signe du discriminant Δ. Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
- Si Δ > 0, alors l'équation admet deux solutions réelles notées x1 et x2. On a alors : x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0.
b. 2x² + 5x – 3 est un polynôme du second degré de la forme ax2 + bx + c, avec a = 2, b = 5 et c = –3. Son discriminant est ∆ = b² – 4ac = 5² – 4 × 2 × (–3) = 49.
Il existe un moyen de résoudre une équation du second degré sans passer par le calcul du discriminant: la factorisation. Cette méthode consiste à trouver une relation entre le produit de a par c d'une part, et b de l'autre.
Méthode On commence par identifier les coefficients a, b et c de l'équation. On vérifie si l'équation est facile à résoudre : c'est le cas lorsque b = 0 ou c = 0, ou encore lorsqu'on reconnaît une identité remarquable. Si l'équation n'est pas évidente, on calcule le discriminant \Delta=b^{2}-4 a c .
Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes. Son usage permet de mieux comprendre les coniques et les quadriques en général. On le retrouve dans l'étude des formes quadratiques ou celle des corps de nombres dans le cadre de la théorie de Galois ou celle des nombres algébriques.
Le discriminant est défini par Δ = 𝑏 − 4 𝑎 𝑐 , ce qui permet d'écrire la formule des racines du second degré comme 𝑥 = − 𝑏 ± √ Δ 2 𝑎 .
Calculer le discriminant nous permet également de déterminer la solution ou les solutions d'une équation du second degré. En fait, il y a plusieurs façons de résoudre une équation du second degré.
C'est donc une équation du second degré. Le nombre de solutions de l'équation ax^2+bx+c=0 (avec a\neq 0), dépend du signe du discriminant \Delta : Si \Delta<0, l'équation n'admet aucune solution réelle. Si \Delta=0, l'équation admet une unique solution (dite « double ») : x_0=\dfrac{-b}{2a}.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0.
Le discriminant d'une forme quadratique dans une base B est le déterminant de la matrice associée à la forme quadratique dans la base B. L'analogie avec la situation précédente permet de définir le discriminant de la forme quadratique comme étant égal à b2 - 4ac.
On résout la première équation avec l'inconnue y en considérant x comme un nombre, comme nous l'avons déjà vu au début du chapitre. Une fois qu'on a trouvé la valeur de y en fonction de x, on prend la deuxième équation et on remplace toutes les occurrences de y par l'expression que l'on vient de trouver.
La formule mathématique de ce calcul est très simple : ((Va-Vd)/Vd)*100 où Va est la valeur d'arrivée et Vd la valeur de départ.
On appelle trinôme du second degré en x à coefficients réels l'expression a x 2 + b x + c . Quand elles existent, les solutions réelles de l'équation du second degré (E) : a x 2 + b x + c = 0 sont appelées racines réelles du trinôme.
Une fonction polynôme de degré 2 f est définie sur ℝ par f (x) = ax2 + bx + c, où a, b et c sont des nombres réels donnés et a ≠ 0.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Si b2 -4ac = 0, alors l'équation a une racine double. Si b2 -4ac < 0, alors l'équation n'a pas de solution. L'équation a deux racines distinctes. On dit que l'équation a une racine double.
La lettre majuscule Δ est souvent utilisée en sciences et mathématiques pour nommer une différence entre deux grandeurs, delta étant l'initiale du mot grec διαφορά / diaphorá, « différence ».
Résoudre l'équation x3 = c (avec ) revient à chercher le nombre x tel que x × x × x = c. Ce nombre est unique, car pour tout nombre réel c, la droite d'équation y = c ne coupe qu'une seule et unique fois la courbe représentative de la fonction x → x3.
On rappelle l'expression de la durée \Delta t d'un transfert en fonction de l'énergie E transférée et de sa puissance P : \Delta t = \dfrac{E}{P}.
Le discriminant réduit vaut : Δ′=b′2−ac. Δ ′ = b ′ 2 − a c . Les racines sont alors données, dans le cas où le discriminant est positif, par la formule : x1=−b′−√Δ′a, x2=−b′+√Δ′a.
Si on définit b' comme l'entier vérifiant l'égalité b = 2b', on simplifie les calculs : Définition du discriminant réduit — Le discriminant réduit est la valeur Δ' définie par : Le discriminant est égal à quatre fois le discriminant réduit qui est donc de même signe que le discriminant.
➔ Le nombre Δ = b2 - 4ac est appelé discriminant de l'équation (appellation due à Sylvester en 1851, du latin discrimen = séparation) : l'étude de son signe permet de conclure quant au nombre et aux valeurs des racines de l'équation.