Soit (un) une suite. On dit que : a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
Si le signe de la différence est positif ou nul pour tout n, la suite est croissante. Si le signe de la différence est négatif ou nul pour tout n, la suite est décroissante. Si la différence change de signe en fonction de la valeur de n, la suite n'est pas monotone.
On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≥ 0, alors f est croissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≤ 0, alors f est decroissante sur I.
Quelles sont les méthodes classiques pour étudier la monotonie d'une suite ? Chercher le signe de . Comparer le quotient et le réel 1 pour une suite à termes strictement positifs. Etudier, sur , le sens de variation de la fonction telle que .
Méthode pour étudier le sens de variation d'une suite
Calculer et étudier le signe de u n + 1 − u n pour tout : Si pour tout , u n + 1 − u n ≥ 0 alors la suite est croissante. Si pour tout , u n + 1 − u n ≤ 0 alors la suite est décroissante.
a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
Pour être monotone une suite doit étre croissante ou décroissante au moins à partir d'un certain rang.
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.
1. Uniformité de ton, d'intonation, d'inflexion : Monotonie de la voix. 2. Manque lassant de variété, de diversité : La monotonie d'un paysage.
On dit qu'une fonction f est monotone ssi elle est soit croissante soit décroissante. La fonction carré x ↦→ x2 n'est pas monotone : en effet, bien qu'elle soit ”tantôt croissante, tantôt décroissante”, elle n'est ni croissante ni décroissante.
(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Si on obtient une valeur constante alors la suite (Un) est une suite arithmétique. Si on obtient une valeur qui dépend de n alors la suite n'est pas une suite arithmétique. Le terme général d'une suite arithmétique (Un) est donné par la formule suivante: Un = Up + (n-p)×r (où Up est le terme initial).
On dit que la suite u est bornée lorsqu'elle est à la fois majorée et minorée. Si la suite u est une suite croissante et majorée, alors elle converge. Si la suite u est décroissante et minorée, alors elle converge. Si la suite u est majorée par M et convergente vers le nombre L, alors L ≤ M.
Une suite est définie par une formule explicite lorsque u n u_n un s'exprime directement en fonction de n. Dans ce cas, on peut calculer chaque terme à partir de son indice.
Déterminer le sens de variation de la suite
Lorsque tous les termes sont strictement positifs, le rapport \dfrac{u_{n+1}}{u_n} = q donne le sens de variation : si 0<q\leq 1, la suite est décroissante. si 0<q< 1, la suite est strictement décroissante. si q=1, la suite est constante.
Définition. Un intervalle I est dit stable par f lorsque f(I) ⊂ I. Définition. Un réel x est appelé un point fixe de f lorsque f(x) = x.
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.
Qui est toujours sur le même ton, ou dont le ton est peu varié. ➙ monocorde.
La monotone de chaleur est la courbe représentant le nombre d'heures durant lesquelles la puissance thermique est appelée au cours de l'année et ce pour chaque puissance appelée comprise entre un arrêt du chauffage (puissance nulle) et la puissance thermique maximale appelée.
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
Résultat : Une suite géométrique de raison q > 0 q>0 q>0 et de premier terme u 0 > 0 u_0>0 u0>0 est croissante (resp. décroissante) si et seulement si q ⩾ 1 q \geqslant 1 q⩾1(resp. q⩽1).
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
Pour rappel, les suites monotones regroupent les suites constantes, croissantes et décroissantes. ), la suite est dite strictement croissante.
Toute suite convergente est par conséquent bornée (par exemple la suite un = (–1)n/(n + 1), qui converge vers 0, reste comprise entre u1 = –1/2 et u0 = 1). Toute suite réelle qui tend vers ±∞ est non bornée (par exemple : un = 2n, qui tend vers +∞).
Si une suite est strictement croissante alors elle tend vers +∞ Faux : 1 − 1 n , ou −e−n. 4. Si une suite tend vers +∞ alors elle n'est pas majorée Vrai.