Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure.
On dit que f est prolongeable par continuité en x0 s'il existe une fonction g : D ∪ {x0} → R continue en x0 telle que g|D = f. Proposition 2.2.6. Soit f : D → R une fonction, et soit x0 ∈ D\D. Alors f est prolongeable par continuité en x0 si et seulement si f admet une limite (finie) en x0.
Donc une stratégie pour prouver que une fonction f N'EST PAS CONTINUE au point (x0,y0) est trouver deux courbes continues y = h1(x), y = h2(x) telles que y0 = h1(x0) et y0 = h2(x0) qui conduisent à deux valeurs différentes de la limite. f(0,y) = −1.
Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).
Nous savons qu'une fonction est continue sur un intervalle si la courbe représentative de la fonction n'a ni trou ni saut sur l'intervalle. En d'autres termes, cela signifie que nous pouvons tracer la courbe représentative d'une fonction continue sans lever le crayon du papier.
On considère la fonction f définie sur R par f(x) = x sin x. donc f(xn) tend vers +∞. donc f(yn) tend vers 0. Par un raisonnement semblable à celui de l'exercice précédent, on en déduit que la fonction x ↦→ cos (1 x ) n'admet pas de limite en 0.
f . Dire qu'une fonction f est continue en a signifie donc que lorsque x se rapproche de a , alors f(x) se rapproche de f(a) .
Une fonction est donc prolongeable par continuité en un point extérieur à son domaine de définition si elle admet une limite finie en ce point. Pour une fonction réelle d'une variable réelle, cette propriété assure notamment son intégrabilité en ce point.
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
Notion de continuité
On dit qu'une fonction f est continue en a si lim(x→a) f(x)= f(a). On dit qu'une fonction f est continue sur un intervalle I si pour tout x_0∈I lim(x→x0)f(x) = f(x0).
Les zéros ou les racines d'un polynôme 𝑓 ( 𝑥 ) sont les valeurs 𝑥 = 𝑎 telle que 𝑓 ( 𝑎 ) = 0 . Si 𝑓 est un polynôme et que 𝑓 ( 𝑎 ) = 0 , alors ( 𝑥 − 𝑎 ) est un facteur de 𝑓 .
Soit f une fonction de deux variables réelles à valeurs réelles et soit D un sous ensemble de R2. On dit que f est continue sur (l'ensemble) D si et seulement si elle est continue en chacun des points de D. f + g est continue en (x0, y0). fg est continue en (x0, y0).
En 0, sa limite à gauche vaut –∞ et à droite, +∞.
La fonction f est dite continue au point a si f(a) est une limite de f en ce point. Si F est séparé (ou même seulement T1) comme tout espace métrisable, il suffit pour cela qu'il existe une limite de f en ce point.
* Si a = b = 0, l'expression devient : f (x) = 0 . On obtient alors la fonction nulle.
Soit F une primitive de la fonction continue f. On a F(b)-F(a)=0 et l'on peut appliquer le théorème de Rolle pour affirmer que f s'annule sur [a;b].
a/ Pour résoudre l'inéquation f(x) < 0, on repère la portion de courbe au dessous de l'axe des abscisses (Ox) : les abscisses correspondantes donnent l'ensemble solution. Si l'inéquation à étudier est f(x) ≤ 0, on prend également les abscisses des points d'intersection. donnent l'ensemble solution.
Exemple 1.7 (Valeur absolue)
Soit f la fonction « valeur absolue » : f (x) = |x|. f (x)−f (0) x =−1. Ainsi f est dérivable à droite et à gauche en 0 : fd (0)=+1 et fg (0) = −1, mais fg (0) = fd (0) donc f n'est pas dérivable en 0.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Théorème : Soit une fonction f définie et dérivable sur un intervalle I. - Si f '(x) ≤ 0, alors f est décroissante sur I. - Si f '(x) ≥ 0, alors f est croissante sur I. Exemple : Soit la fonction f définie sur R par f (x) = x2 − 4x .
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
la limite en 0 de n'existe pas. On ne peut alors parler ni de nombre dérivé, ni de tangente en . Les limites à droite et à gauche en 0 du rapport n'étant pas égales, on ne peut parler de limite en 0. La fonction valeur absolue n'est donc pas dérivable en 0.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .