On dit d'une fonction f qu'elle est positive sur un intervalle si, pour tout x dans cet intervalle, on a f(x) ≥ 0. La courbe représentative de la fonction est alors située au-dessus de l'axe horizontal, lorsqu'on se limite aux points dont l'abscisse appartient à l'intervalle considéré.
On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement strictement croissante sur I) signifie que pour tous réels a et b de I : si a < b alors f (a) ≤ f (b) (respectivement si a < b alors f (a) < f (b)).
Définition : Définir une fonction f sur un intervalle [a ; b], c'est donner un procédé qui, à tout nombre x de l'intervalle [a ; b], associe un et un seul nombre réel noté f(x). f( ) a b x x → » où « )(fx x » se lit « à x, associe f de x ». Définitions : Soit f une fonction définie sur l'intervalle [a ; b].
La fonction 𝑓 est strictement croissante sur les intervalles où 𝑓 ′ ( 𝑥 ) > 0 et est strictement décroissante sur les intervalles où 𝑓 ′ ( 𝑥 ) < 0 . Par conséquent, 𝑓 est strictement croissante sur l'intervalle ] 0 ; 1 [ et est strictement décroissante sur les intervalles ] − ∞ ; 0 [ et ] 1 ; + ∞ [ .
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.
D'après le théorème des valeurs intermédiaires (TVI), comme 0 est compris entre f(0) et f(2), il existe un réel α compris entre 0 et 2 tel que f(α)=0. Comme f(0) et f(2) sont tous les deux non nuls, ce réel α appartient à l'intervalle ouvert ]0, 2[.
On rappelle qu'une fonction est continue sur un intervalle si elle est continue en tout point de l'intervalle. Par conséquent, nous devons déterminer si 𝑓 ( 𝑥 ) est continue en 𝑥 = 𝑎 pour tout 𝑎 ∈ [ 0 , 3 ] .
Si la fonction est croissante (respectivement décroissante) alors la dérivée est positive (respectivement négative).
Étudier le signe d'une telle expression revient à étudier séparément le signe des facteurs et puis à appliquer la règle des signes. Cela revient à résoudre les inéquations et . Pour cela, on utilise un tableau de signes. Le produit de deux nombres négatifs est positif.
Le calcul de base de l'alpha soustrait simplement le rendement total d'un investissement des rendements de la valeur de référence, sur la même période. Supposons que le rendement attendu est de 12% après un an, le taux de rendement sans risque est de 10%, le bêta est de 1,2 et la valeur de référence est de 11%.
Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c appartenant à l'intervalle [a ; b] tel que f(c) = k. Autrement dit, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet au moins une solution dans l'intervalle [a ; b].
Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).
donc, d'après le théorème des valeurs intermédiaires, il existe AU MOINS un réel alpha de ]a;b[ tel que f(alpha)=0. donc f définit une bijection de [a;b] sur f([a;b]). Par conséquent il existe UN UNIQUE réel alpha de ]a;b[ tq f(alpha)=0.
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
MÉTHODE 1. –
Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
Les fonctions disposent d'une représentation algébrique et peuvent être écrites comme f et l'antécédent comme x, ce qui donne l'image f(x). Les fonctions peuvent être variées et utiliser différentes expressions, par exemple, f ( x ) = x 2 ou f ( x ) = 2 x − 1 .
Autrement dit, une fonction est analytique si elle est développable en série entière au voisinage de chaque point de son ensemble ouvert de définition. tout entier est dite entière.
Une des méthodes les plus couramment utilisées pour déterminer le sens de variation d'une fonction est l'étude du signe de sa dérivée. ➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction.