Par définition de ·∞, un ensemble X est borné s'il est inclus dans un pavé [−a,a]N, qui est compact. Si de plus X est fermé, c'est un fermé dans un compact, donc il est compact.
Soit(E,T) un espace topologique et A un sous-ensemble de E. On dit que A est un ensemble compact si, muni de la topologie induite par celle de E, il devient un espace compact. Par exemple, tous les sous-ensembles finis d'un espace topologique quelconque sont des ensembles compacts.
Un espace topologique séparé est compact si et seulement si toute suite généralisée possède au moins une valeur d'adhérence, autrement dit une sous-suite généralisée convergente. Cette définition équivalente est rarement utilisée. Elle est particulièrement adéquate pour prouver que tout produit de compacts est compact.
Ainsi ℝ n'est pas compact, puisque la fonction identité, qui à x associe x lui-même, est continue mais non bornée.
∀n ⩾ n1, d(xϕ(n),x) < ε/2. Alors, ∀n ⩾ max (n0,n1), d(xn,x) ⩽ d(xn,xϕ(n)) + d(xϕ(n),x) < ε, ce qui montre que la suite converge. Un espace métrique (X,d) est dit complet si toute suite de Cauchy converge.
Théorème : R , C sont des espaces métriques complets. Une partie A de E est complète si l'espace métrique induit (A,d) est complet. Proposition : Si E est un espace métrique complet et A⊂E A ⊂ E , alors A est complet si et seulement si A est fermé.
L'espace ℝ des nombres réels et l'espace ℂ des nombres complexes, munis de la distance usuelle d(x, y) = |x – y|, sont complets. Tous les espaces vectoriels normés de dimension finie sur ℝ sont des espaces de Banach, c'est-à-dire des espaces vectoriels normés complets.
Une partie d'un ensemble ordonné est bornée si elle admet à la fois un majorant et un minorant dans l'ensemble ordonné. En dehors du cas où la partie elle-même contient un majorant et un minorant, cette définition dépend donc a priori du reste de l'ensemble ordonné.
En mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de ℂ (en général, K = ℝ ou ℂ), complet pour la distance issue de sa norme.
∅ admet une unique topologie, qui est {∅}. Elle est à la fois grossière (donc cet espace topologique est connexe) et discrète (donc cet espace est compact, comme tout espace fini discret).
Re: Q n'est pas (au blé) complet
Si une suite de rationnels (un) converge vers un irrationnel r , alors c'est une suite de Cauchy. Cependant, elle n'admet pas de limite dans Q . Or, si Q était complet, toute suite de Cauchy à éléments rationnels (donc, en particulier, la suite (un) ) convergerait vers un rationnel.
Une suite de Cauchy a au plus une valeur d'adhérence et si elle en a une, alors elle converge. Toute sous-suite d'une suite de Cauchy est, elle-même, une suite de Cauchy. Toute suite de Cauchy admettant une sous-suite convergente est convergente.
En mathématiques et plus particulièrement en analyse, une application contractante, ou contraction, est une application qui « rapproche les images » ou, plus précisément, une application k-lipschitzienne avec k < 1. Le théorème de point fixe le plus simple et le plus utilisé concerne les applications contractantes.
Lorsque l'ensemble ordonné est celui des réels, l'existence d'une borne supérieure est assurée pour toute partie non vide et majorée : on dit que ℝ possède la propriété de la borne supérieure. Cette même propriété assure aussi l'existence d'une borne inférieure pour tout ensemble non vide et minoré de réels.
Définition : On dit qu'un réel est un majorant de si tout élément de est inférieur ou égal à . On dit que est majorée si admet un majorant (elle en admet alors une infinité). On définit de même un minorant, une partie minorée.
Si l'ensemble des majorants d'une partie A de R admet un plus petit élément M on dit que M est la borne supérieure de A et on note M = sup(A). Cette borne est alors unique. Si l'ensemble des minorants d'une partie A de R admet un plus grand élément m, on dit que m est la borne inférieure de A et on note m = inf(A).
Soient f:E→F, une application et x0, un élément de E. On dit que f est continue sur E si et seulement si f est continue en tout point de E.
On dit que γ∈E γ ∈ E est un point fixe de f si f(γ)=γ. f ( γ ) = γ . Si f est définie sur un intervalle I de R , cette propriété se traduit graphiquement par le fait que la courbe représentative de f coupe la droite d'équation y=x en le point (γ,γ).
Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Définition : Soit une suite réelle; on dit que est une suite de Cauchy ou vérifie le critère de Cauchy si : quel que soit , il existe un entier tel que les inégalités p ≥ N et n ≥ N entraînent | u p − u n | < ϵ .
La règle de Cauchy n'est bien adaptée qu'à l'étude des séries dont le terme général contient essentiellement des puissances. On a : u n n = ( n n + 1 ) n = 1 ( 1 + 1 n ) n . On en déduit : lim n → + ∞ u n n = 1 e < 1 . La série est convergente.
Définition : La suite (un) admet le réel pour limite si : Tout intervalle ]a ; b[ contenant , contient tous les termes de la suite à partir d'un certain rang. On dit alors que la suite est convergente.
Les éléments de l'ensemble sont tous minorés par 1 donc la borne inférieure de l'ensemble est supérieure ou égale à 1. Soit ϵ > 0. Comme R \ Q est dense dans R, il existe z un nombre irrationnel tel que, 1 <z< 1 + ϵ. Le nombre 1 + ϵ n'est donc pas un minorant de l'ensemble.
Notation On va noter P∗(N) l'ensemble des parties non vides de N. Toute partie non-vide de N admet un minimum. ∀P : P(N), si P est non vide alors ∃m : N,m ∈ P et ∀p : P,m ≤ p. On montre par récurrence sur n que si P ∩ [0..n] est non vide, alors P admet un élément plus petit que tous les autres.
L'ensemble vide est voisinage de chacun de ses points, puisqu'il n'en a pas. De manière générale, une assertion commençant par quelque chose du genre "∀x∈∅" est vraie; en quelque sorte, il n'y a rien à vérifier.