Définition : Soit une suite réelle; on dit que est une suite de Cauchy ou vérifie le critère de Cauchy si : quel que soit , il existe un entier tel que les inégalités p ≥ N et n ≥ N entraînent | u p − u n | < ϵ .
Une suite (un)n∈N sera dite de Cauchy si pour tout ϵ > 0 il existe N ∈ N tel que |un − um| < ϵ pour tout m, n ≥ N. Proposition 3.2. Toute suite convergente est de Cauchy. pour tout n ≥ N.
Toute suite de Cauchy est bornée. Une suite de Cauchy a au plus une valeur d'adhérence et si elle en a une, alors elle converge. Toute sous-suite d'une suite de Cauchy est, elle-même, une suite de Cauchy. Toute suite de Cauchy admettant une sous-suite convergente est convergente.
Pour une série à termes réels ou complexes, exprimer que la suite des sommes partielles satisfait à la condition de Cauchy constitue une condition nécessaire et suffisante de convergence.
Une suite réelle est stationnaire s'il existe un réel et un entier tels que, pour tout entier n ≥ n 0 , on ait u n = a .
Suite convergente
contient tous les termes de la suite à partir d'un certain rang). On dit également qu'elle converge vers ℓ. Si une suite possède une limite réelle, on dit qu'elle est convergente ou qu'elle converge.
Un+1 - Un = [5n + 5 + 3] - [5n +3]. Un+1 - Un = [5n + 8] - [5n +3]. Un+1 - Un = 5n + 8 - 5n - 3 Un+1 - Un = 5. La différence Un+1 - Un est un réel ne dépendant pas de n (constant), donc la suite (Un) est arithmétique de raison r=5 et de premier terme U0= 3.
La règle de Cauchy n'est bien adaptée qu'à l'étude des séries dont le terme général contient essentiellement des puissances. On a : u n n = ( n n + 1 ) n = 1 ( 1 + 1 n ) n . On en déduit : lim n → + ∞ u n n = 1 e < 1 . La série est convergente.
En mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente.
Un critère de convergence normale
La série ( ∑ f n ) converge normalement sur si et seulement si : il existe une série numérique à termes positifs convergente ( ∑ a n ) ; ( ∀ n ∈ N ) ( ∀ x ∈ I ) | f n ( x ) | ≤ a n .
Pour démontrer qu'une suite (un) est divergente, on peut trouver deux suites extraites de (un) qui convergent vers des valeurs différentes; on peut la minorer par une suite tendant vers +∞ .
Théorème : R , C sont des espaces métriques complets. Une partie A de E est complète si l'espace métrique induit (A,d) est complet. Proposition : Si E est un espace métrique complet et A⊂E A ⊂ E , alors A est complet si et seulement si A est fermé.
Avec des quantificateurs, la propriété lim un = l se traduit par ∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, l − ε ≤ un ≤ l + ε. On peut aussi remplacer l − ε ≤ un ≤ l + ε par |un − l| ≤ ε.
Il suffit de considérer la suite géométrique de raison z ∈ C avec |z| > 1 pour s'en convaincre. Définition 3 Soit (zn)n ∈ CN. On dit que (zn)n converge vers l ∈ C si ∀ϵ > 0, ∃nϵ ∈ N, ∀n ≥ nϵ, |zn − l| < ϵ. un = l et l est appelée la limite de la suite (zn)n.
une suite bornée n'est pas nécessairement convergente (contre-exemple : un = (–1)n est bornée — majorée par 1 et minorée par –1 — mais n'admet pas de limite) ; pour qu'une suite tende vers ±∞, il ne suffit pas qu'elle soit non bornée (contre-exemple : la suite qui vaut 0 pour n pair, et n pour n impair).
1 n(n + 1) converge et a pour somme 1. n diverge. Si la série ∑ un converge, alors le terme général un tend vers 0 quand n tend vers + & . Attention : la réciproque de ce théorème est fausse et il existe des séries dont le terme général tend vers 0 et qui sont divergentes (voir ∑ 1 n ci-dessous).
Re : série 1/n diverge
En effet si la série harmonique convergeait (disons vers un réel a), Sn et S2n convergeraient vers a, donc leur différence devrait converger vers zéro.
si la série de terme général vn converge, alors la série de terme général un converge également, si la série de terme général un diverge, alors la série de terme général vn diverge également, Si un∼vn, alors les séries de terme général un et vn sont de même nature.
1(1-a)2=+∞∑n=0(n+1)an. +∞∑n=0(n+1)3-n. +∞∑n=0(n+1)3-n=+∞∑n=0n∑k=013k13n-k=(+∞∑n=013n)(+∞∑m=013m)=94.
Les sommes partielles sont un premier tremplin vers le concept final de ce cours : les séries. La différence entre somme partielle et série est assez simple à comprendre : une série additionne tous les termes d'une suite infinie, alors que la somme partielle n'en additionne qu'un nombre fini.
Pour calculer le rayon de convergence on fait souvent appel à la méthode suivante liée à la règle de d'Alembert. Pour z 0 = C ∗ , considérons la série à termes complexes ∑ a n z 0 n . Le terme général est u n = a n z 0 n .
Le terme général d'une suite arithmétique (Un) est donné par la formule suivante: Un = Up + (n-p)×r (où Up est le terme initial).
Une suite (un) est géométrique de raison q si, pour tout entier naturel n, on a un+1=qun. u n + 1 = q u n . Cette expression utilise la récurrence. Elle signifie que l'on multiplie toujours un terme de la suite par le même réel pour obtenir le suivant.
En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite.