Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
b) Représentation graphique On considère un repère du plan. * Si une fonction est linéaire, alors sa représentation graphique est une droite qui passe par l'origine. * Réciproquement, si la représentation graphique d'une fonction est une droite qui passe par l'origine du repère, alors cette fonction est linéaire.
Soit O ∈ E un point fixé, alors f : E → F est affine si et seulement si l'application φ : −→ E → −→ F défini par φ( −−→ OM) = −−−−−−−→ f(O)f(M) est linéaire. linéaire, alors l'application f : E → F définie par : f(M) = O/ + φ( −−→ OM) .
Une fonction est affine si elle peut s'écrire sous la forme f(x) = ax + b, où a et b sont des nombres réels. Si b = 0, alors f est une fonction linéaire. Si a = 0, alors f est une fonction constante.
On écrit f : x → ax. Cela signifie : f est la fonction linéaire qui, à tout nombre x, associe le nombre ax, appelé image de x par la fonction f. On écrit aussi : soit f définie par f(x) = ax.
Une fonction linéaire est une fonction affine particulière. En effet, f : x → ax peut s'écrire f : x → ax + 0 . f : x → ax + b est une fonction affine, g : x → ax est la fonction linéaire associée à f.
Une fonction n'est pas affine lorsque le taux d'accroissement n'est pas constant.
Le sens de variation d'une fonction affine dépend du signe du coefficient directeur a a a. Ce coefficient directeur représente la « pente » de la droite représentative de f f f. Si a > 0 a > 0 a>0 la fonction est croissante, la droite « monte ». Si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale.
Tout d'abord une fonction linéaire a pour équation y = ax alors qu'une affine est y = ax + b. Une fonction linéaire est donc un cas particulier d'une affine, en prenant b = 0. Graphiquement, la droite linéaire passe par l'origine contrairement à l'affine. Ce qui suit est donc valable pour les deux types de fonctions.
La linéarité en mathématiques
Exemple: fonction linéaire. Les premiers exemples de situations où intervient la linéarité sont les situations de proportionnalité constante entre deux variables : le graphe représentant une variable en fonction de l'autre forme alors une ligne droite qui passe par l'origine.
la variable indépendante (x) est la même, que la variation des valeurs consécutives de la variable dépendante (f(x)) est constante, et qu'elle passe par l'origine (0,0), elle représente une fonction linéaire.
Soit la fonction linéaire f définie par f(x) = – x. Sa représentation graphique est une droite D qui passe par l'origine. Pour construire D, il suffit de déterminer les coordonnées d'un autre de ses points, c'est-à-dire un nombre et son image par f. Par exemple : f(1) = –1.
La fonction peut donc être définie par 𝑓 ( 𝑥 ) = 2 𝑥 + 4 (notation fonctionnelle) ou 𝑓 ∶ 𝑥 ⟶ 2 𝑥 + 4 (notation par flèche). Cela signifie que l'on peut déterminer si 𝑓 définit une fonction en traçant la représentation graphique de 𝑦 = 𝑓 ( 𝑥 ) et en effectuant le test de la droite verticale.
Si une fonction affine est une fonction constante, c'est-à-dire qu'elle est de la forme 𝑓 ( 𝑥 ) = 𝑏 , la représentation graphique de cette fonction est toujours une droite horizontale passant par le point ( 0 ; 𝑏 ) .
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés). Une fonction linéaire est une fonction affine qui traduit une situation de proportionnalité. Le nombre a est le coefficient de proportionnalité et le nombre b est nul (= 0).
Une fonction affine est une fonction dont le graphique est une droite. Par conséquent, le graphique d'une fonction non affine n'est pas une droite. Un exemple de fonction non affine serait quelque chose comme 𝑦 est égal à 𝑥 au cube ou 𝑦 est égal à 𝑒 à la puissance 𝑥.
Propriété Dans un plan muni d'un repère (O ; I ; J), la représentation graphique de la fonction affine x → ax + b est la droite d'équation : y = ax + b. a est le coefficient directeur de la droite et b est son ordonnée à l'origine.
Soient x1 et x2 deux nombres quelconques (x1 x2). L'accroissement des images par une fonction affine, est proportionnel à l'accroissement des nombres associés.
En effet, si on note x la longueur d'un côté d'un carré, l'aire du carré est égale à x2. La fonction est donc f : x x2. Cette fonction n'est pas de la forme x ax avec a nombre fixé indépendant de x. La fonction f n'est donc pas linéaire.
Définition : Soit une fonction numérique f définie sur un intervalle I. f est une fonction affine si et seulement s'il existe deux réels m et p tels que pour tout x de I, on a : f(x) = mx + p.
La non-linéarité est une propriété utilisée pour décrire une relation qui n'est pas linéaire. Ce terme décrit une fonction qui ne peut être représentée par une ligne droite sur un graphique, mais qui a plutôt une forme courbe ou angulaire.
Une fonction linéaire est définie sur IR, c'est-à-dire que f(𝑥) existe pour n'importe quelle valeur de 𝑥. Une fonction linéaire est de la forme : f(𝑥) = m𝑥, m étant un réel donné, positif, négatif ou même nul. Remarque : Une fonction linéaire est une fonction affine dont l'ordonnée à l'origine vaut 0.
Une équation linéaire à une inconnue x est une équation de la forme ax + b = 0 où a et b sont des réels (ou des complexes). Les réels a et b sont appelés des coefficients, a est le coefficient devant x et b le coefficient constant. On appelle aussi cette équation, une équation du premier degré à une inconnue.
Toute droite s'écrit de la forme y = a x + b y=ax+b y=ax+b, donc il suffit de déterminer les nombres a et b. On peut commencer par lire le point b sur l'axe des ordonnées. Pour en déduire le coefficient directeur a, on se positionne sur l'ordonnée à l'origine et on décale de une unité.