Il est possible d'y appliquer la loi des cosinus pour trouver les dimensions manquantes, puisque l'on connaît une valeur de chaque terme de la loi des sinus. Figure 4.39 Loi des cosinus. Cette relation est valable pour tous les côtés d'un triangle quelconque, d'où : b2 = a2 + c2 - 2ac cos.
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Il est possible de déterminer une mesure manquante d'un cylindre à partir de son volume. Pour ce faire, il faut remplacer les valeurs connues dans la formule de volume et effectuer les opérations inverses afin de déterminer la mesure recherchée.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c).
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Exemple de mesure de longueur
On note en résumé : largeur = 21 cm = 21 × 1 cm = 21 × 0,01 × 1 m = 0,21 m et longueur = 29,7 cm = 29,7 × 1 cm = 29,7 × 0,01 × 1 m = 0,297 m .
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm. Exemple 2 : Sur la figure ci-contre, les droites (CD) et (HT) sont parallèles.
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
La somme des trois angles est égale à 180° soit deux angles droits (ou encore radians. Ce qui implique que deux des angles sont toujours aigus. La somme des longueurs de deux côtés est toujours plus grande que la longueur du troisième côté.
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle. La hauteur permet de calculer l'aire du triangle.
Par convention, l'incertitude s'exprime avec un seul chiffre significatif arrondi au supérieur. Exemple : si on mesure une longueur de 15,5 cm avec une incertitude de ± 0,25 cm, alors lexp= 15,5 cm et U(l)= 0,3 cm. La longueur mesurée est alors exprimée sous la forme l= 15,5 ± 0,3 cm.
Écriture des dimensions d'une surface ou d'un volume
Les mesures d'une surface ou d'un volume sont généralement données dans un ordre déterminé : longueur × largeur (× hauteur) ou largeur (× profondeur) × hauteur. Entre les mesures, on emploie la préposition sur, et non par.
Elle se calcule en faisant la somme de toutes les données et en divisant cette somme par le nombre de données de la distribution.
Le côté le plus long est [BC] ; si le triangle était rectangle, ce côté serait l'hypoténuse. D'une part, on a BC² = 20² = 400. D'autre part, on a AC²+AB² = 16² +12² = 256+144 = 400.
L'hypoténuse est toujours le côté le plus long du triangle rectangle (directement opposé à l'angle droit), le côté opposé est le côté directement opposé à l'angle en question, et le côté adjacent est le côté à côté de l'angle (qui n'est pas l'hypoténuse).
Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm.
Un triangle scalène. (Géométrie) Se dit d'un triangle dont les trois côtés sont de longueurs différentes.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Dans un triangle, la longueur du plus grand côté est inférieure à la somme des longueurs des deux autres côtés. Cette propriété, appelée « l'inégalité triangulaire », permet de savoir si la construction d'un triangle est possible.
ABC est un triangle équilatéral. Si R est le rayon du cercle circonscrit, la hauteur h du triangle est AH = AO + OH = R. Avec le calcul de la hauteur h = a , en simplifiant R = a , on trouve que a, longueur du côté BC, est égal à R .
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
b) Réciproque de Thalès.
Comme le théorème de Thalès est ainsi structuré : « Si des droites sont parallèles, alors des quotients de longueurs de segment sont égaux ». Sa réciproque ne peut être que de la forme : « Si des quotients de longueurs de segment sont égaux, alors des droites sont parallèles. »