Le quartile inférieur, ou premier quartile (Q1), est la valeur au-dessous de laquelle se trouvent 25 % des données lorsqu'elles sont arrangées en ordre croissant. Le quartile supérieur, ou troisième quartile (Q3), est la valeur au-dessous de laquelle se trouvent 75 % des données arrangées en ordre croissant.
Le troisième quartile Q3 est valeur 50e valeur. En effet, 3 4 × 66 = 49,5→ 50 . Donc Q3 = 3. Définition : L'écart interquartile d'une série statistique de premier quartile Q1 et de troisième quartile Q3 est égal à la différence Q3 - Q1.
La formule Excel pour calculer les quartiles
On va utiliser tout simplement la fonction QUARTILE qui prend comme paramètre d'abord la série de données et le numéro du quart. Donc si on veut le 1er quartile avec 25% des valeurs, on choisit 1,on peut choisir 2 pour la moitié, et 3 pour le 3e quartile.
Le quartile inférieur sera la moyenne de la valeur du point de rang 6 ÷2 = 3 et la valeur du point de rang (6 ÷ 2) + 1 = 4. Il est donc égal à (15 + 36) ÷2 = 25,5. Le quartile supérieur sera la moyenne de la valeur du point de rang 6 + 3 = 9 et de la valeur du point de range 6 + 4 = 10, soit (43 + 47) ÷ 2 = 45.
le premier quartile (noté généralement Q1) est le salaire au-dessous duquel se situent 25 % des salaires ; le deuxième quartile est le salaire au-dessous duquel se situent 50 % des salaires ; c'est la médiane ; le troisième quartile (noté généralement Q3) est le salaire au-dessous duquel se situent 75 % des salaires.
26 ÷ 4 = 6,5 -> donc le premier quartile Q1 est la 7ème valeur qui égale à 9. Le premier quartile Q1 est égal à 9. 3 × 26 ÷ 4 = 19,5 -> donc le troisième quartile Q3 est la 20ème valeur qui égale à 16. Le troisième quartile est égal à 16.
On peut utiliser un tableau et cumuler les effectifs pour chercher la médiane et les quartiles. N=20; la moitié est N/2=10; la médiane est une valeur comprise entre la 10e et la 11e valeur soit comprise entre 38 et 39. Le premier quartile est 36 et le troisième est 39.
Par exemple pour calculer le premier quartile on utilise la formule : =QUARTILE(votre_plage:de_données;1). Le résultat du premier quartile est 484.
Calcul des quantiles
Soit N le nombre de valeurs observées de la population échantillonnée, et soit x1, x2, ..., xN les valeurs ordonnées de la même population, telles que x1 est la plus petite valeur, etc. Pour le k-ième q-quantile, on a p = k⁄ q.
Sur l'axe des ordonnées, on repère la fréquence cumulée croissante 50%. On rejoint horizontalement la courbe et on redescend verticalement sur l'axe des abscisses pour déterminer la valeur de la médiane.
Comment interpréter des quartiles donnés? si on connait les quartiles Q1 et Q3 d'une série, que peut-on en déduire? Au moins un quart (25%) des valeurs sont inférieures ou égales à Q1. Au moins trois quarts (75%) des valeurs sont inférieures ou égales à Q3.
Pour calculer l'effectif global, il faut prendre en compte le nombre de salariés présents dans l'entreprise au 31 décembre de l'année passée. Il s'agit des salariés ayant un contrat de travail avec l'entreprise, même s'ils sont absents momentanément (maternité, maladie, congés, formation, etc.).
Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant. Si le nombre de valeurs est un nombre impair, il faut lui additionner 1, puis le diviser par 2 pour obtenir le rang qui correspondra à la médiane.
Statistiques pour décrire une variable quantitative
La description d'une variable quantitative se base sur les statistiques suivantes : la moyenne, la médiane, la variance, l'écart-type, les quantiles. On peut aller plus loin en regardant l'asymétrie et l'aplatissement.
L'effectif L'effectif d'une valeur d'un caractère = nombre d'individus nombre d'individus nombre d'individus de la population étudiée qui a cette valeur. La fréquence La fréquence d'une valeur d'un caractère = quotient de l'effectif par l'effectif total (souvent en %).
L'étendue est la différence entre la plus grande et la plus petite valeur de la série statistique.
L'étendue d'une série statistique est la différence entre la valeur la plus grande et la valeur la plus petite de cette série. Etendue = 4 – 0 = 4. L'étendue de cette série statistique est donc de 4. Remarque : L'étendue est un indicateur de la dispersion des valeurs de cette série statistique.
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
La deuxième génération d'Audi Q3 devrait bénéficier d'un restylage en 2023, comme l'annonce ce prototype surpris en Chine. Qui a dit que les Audi étaient toujours adeptes de la continuité ? Pour sa deuxième génération, lancée fin 2018, le Q3 n'avait pas hésité à bouleverser totalement son allure.
Le lancement de la nouvelle Audi Q3 est prévu pour l'automne de l'année 2022.
Terme souvent employé pour désigner le 1er trimestre (quarter 1), le deuxième trimestre, le troisième trimestre et le quatrième trimestre lors de la publication des résultats des entreprises.