Ainsi par exemple, 21 x 30 x 111 = 22 est un diviseur de 132. L'ensemble des diviseurs de 132 est : 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 132) est la suivante : 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132.
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5. Le nombre de diviseurs de 22 est 3 ; celui de 32 est 3 et celui de 5 est 2.
Les diviseurs de 126 sont : 1 ; 2 ; 3 ; 6 ; 7 ; 9 ; 14 ; 18 ; 21 ; 42 ; 63 ; 126.
1) On effectue la division euclidienne du plus grand des deux nombres par le plus petit. 2) On effectue la division euclidienne du diviseur par le reste de la division précédente, jusqu'à ce que le reste de la division soit égal à zéro.
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers. Cette méthode est plus rapide et efficace lorsque l'on cherche le PGCD entre deux grands nombres.
Ex. : si l'on additionne le 1 et le 2 du nombre 12, on trouve 3 (1 + 2 = 3) ; donc 12 est un multiple de 3 (3 × 4 = 12). Ex. : Si l'on additionne les chiffres du nombre 213 840, on trouve 2 + 1 + 3 + 8 + 4 = 18 ; on additionne ensuite les chiffres du nombre 18 : 1 + 8 = 9 ; 213 840 est un multiple de 3.
Le nombre de diviseurs d'un entier n est le produit des puissances apparaissant dans sa décomposition en facteurs premiers, chacune augmentée de 1.
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
Par exemple, les diviseurs positifs de 30 sont, dans l'ordre : 1, 2, 3, 5, 6, 10, 15 et 30. Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42.
3. Les diviseurs de 45 sont 1 ; 3 ; 5 ; 9 ; 15 ; 45 les diviseurs de 64 sont 1 ; 2 ; 4 ; 8 ; 16 ; 32 ; 64. Le diviseur commun de 45 et 64 est donc 1. Le plus grand diviseur commun aux deux nombres est 1.
Pour décomposer 120 en produit de facteurs premiers, saisir 120 puis valider une première fois avec B. Appuyer ensuite sur les touches q - soit Décomp pour obtenir la décomposition en facteurs premiers.
Pour décomposer un nombre, on donne la valeur de chaque chiffre du nombre. Il y a plusieurs types de décomposition : la décomposition « additive » ( = utilisation de l'addition) 33545 = 30 000 + 3 000 + 500 + 40 + 5.
Les diviseurs de 175 sont : 1, 5, 7, 25, 35, 175.