Il est facile de déterminer un vecteur directeur. Si la droite est écrite sous forme réduite (soit y=ax+b y = a x + b ), le vecteur →u(1;a) u → ( 1 ; a ) fait l'affaire. Si son équation apparaît sous forme cartésienne, on prend →u(−β;α) u → ( − β ; α ) ou →u(β;−α) u → ( β ; − α ) .
Équation cartésienne d'une droite :
Si on a seulement l'équation réduite d'une droite de la forme y = m x + p y=mx+p y=mx+p, alors un vecteur directeur de la droite est u ⃗ L'équation cartésienne d'une droite n'est pas unique. Il est possible de multiplier les coefficients par un facteur k k k non nul.
On connaît l'équation de la droite
Soit ( O , ı → , ȷ → ) un repère du plan et une droite d'équation a x + b y = c , où , et sont des nombres réels donnés. Alors les vecteurs u → ( − b a ) et u ′ → ( b − a ) et tout vecteur qui leur est colinéaire, sont des vecteurs directeurs de la droite .
La direction du vecteur est celle de la 'droite' dans laquelle est inclus le vecteur, le sens est donné par l'orientation du segment: 'vers la gauche' ou bien 'vers la droite', la norme correspond à la longueur du segment. Le sens est déterminé par la flèche.
But : trouver les coefficients p et d. Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
Pour passer de l'équation réduite d'une droite à son équation cartésienne, il suffit de mettre tous les termes du même côté. Donner une équation cartésienne de la droite y = 5x + 4. Une équation cartésienne de cette droite est –5x + y – 4 = 0.
Si y = ax + b est l'équation réduite de la droite (d), alors le coefficient directeur de (d) est a et son ordonnée à l'origine est b.
(xB - xA ; yB - yA) est l'un des vecteurs directeurs de cette droite. Si une droite a pour équation réduite y =ax + b alors il suffit de déterminer deux points de cette droite pour trouver un vecteur unitaire.
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) .
On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
On appelle vecteur normal de la droite (D) tout vecteur (non nul) orthogonal à un vecteur directeur de la droite. Si l'équation cartésienne de (D) est ax+by+c=0, alors un vecteur normal de (D) est le vecteur de coordonnées (a,b).
Il est facile de déterminer un vecteur directeur. Si la droite est écrite sous forme réduite (soit y=ax+b y = a x + b ), le vecteur →u(1;a) u → ( 1 ; a ) fait l'affaire. Si son équation apparaît sous forme cartésienne, on prend →u(−β;α) u → ( − β ; α ) ou →u(β;−α) u → ( β ; − α ) .
Les vecteurs directeurs permettent d'étudier le parallélisme de deux droites. Théorème : Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs sont colinéaires. Il existe beaucoup de couples de vecteurs directeurs du plan.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
On considère la droite (D) d'équation cartésienne 2x – 3y + 1 = 0. 1°) Déterminer un vecteur directeur de (D). 2x – 3y + 1 = 0 est de la forme ax +by + c = 0 avec a = 2; b = –3 et c =1. La propriété ci-dessus permet donc d'affirmer que le vecteur est vecteur directeur de (D).
Un vecteur est défini par trois composantes : Sa direction : celle de la droite qui porte le vecteur. Son sens : oriente le vecteur (par la flèche) ex : sens de A vers B. Sa longueur (norme en physique) : il suffit de mesurer.
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Si on connaît les coordonnées (a ; b) et (c ; d) de deux points d'une droite, on peut calculer son coefficient directeur m. On peut ensuite écrire immédiatement qu'une équation de cette droite est y - b = m(x - a).
On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D. ( )≠ 0;0 ( ). Cette équation est appelée équation cartésienne de la droite D.
Il n'est pas toujours nécessaire de calculer le discriminant Δ. On peut aussi chercher une racine évidente de l'équation du second degré en factorisant le polynôme. Résoudre x2 – 1 = 0 revient à résoudre x2 = 1 soit x = –1 ou x = 1. Résoudre x2 – 2x = 0 revient à résoudre x(x – 2) = 0 soit x = 0 ou x = 2.
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
Il est très simple de tracer une droite dont on connaît l'équation réduite. Par exemple, si la droite a pour équation y=2x+3, alors l'ordonnée à l'origine est 3 et la droite passe par le point de coordonnées (0 ; 3). Son coefficient directeur est 2, donc si x augmente de 1, alors y augmente de 2.