Les côtés [AC] et [AB] forment l'angle droit du triangle tandis que le côté [BC] forme l'hypoténuse, le plus grand côté se situant face à l'angle droit. Les deux autres côtés (AB et AC), adjacents à l'angle droit, sont les cathètes.
Dans un triangle rectangle, un côté adjacent à l'angle droit est parfois appelé une cathète. Le terme a désigné plus généralement une perpendiculaire et vient du grec ancien κάθετος (káthetos), mené en bas. Le troisième côté, opposé à l'angle droit est l'hypoténuse du triangle rectangle.
Le triangle rectangle isocèle : si l'on connaît l'hypoténuse de ce rectangle, on peut arriver à trouver la valeur des cathètes en posant cette longueur comme la variable x pour obtenir l'équation x2 + x2 = c2 qui à son tour devient 2x2 = c2. L'élève peut désormais la résoudre à l'aide de la racine carrée.
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
Calculer la longueur d'un segment dans un repère
A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat. Exemple1: Soit A(-5;6) et B(7;-3).
Théorème de Thalès : ABC est un triangle. Si M et N sont des points respectifs des demi-droites [AB) et [AC) tels que les droites (BC) et (MN) sont parallèles, alors : AM/AB = AN/AC=MN/BC Méthode : Penser au théorème de Thalès pour calculer des longueurs avec des triangles emboîtés avec deux côtés parallèles.
Le théorème de Thalès affirme que dans un triangle, une droite parallèle à l'un des côtés du triangle définit un deuxième triangle aux angles proportionnels à l'aide des deux autres côtés.
Comment calculer l'hypoténuse ? L'hypoténuse est le côté opposé de l'angle droit du triangle rectangle, le côté le plus long. Selon le théorème de Pythagore, le carré de l'hypoténuse est égal à la somme des carrés des longueurs des côtés à angle droit (les jambes).
Si ABC est un triangle rectangle en A, alors AB2 = AC2 + BC2, où AB représente l'hypoténuse. Une autre façon d'énoncer le théorème de Pythagore est de dire que si nous connaissons la longueur des deux côtés a et b de l'angle droit, nous pouvons calculer la longueur de l'hypoténuse c avec la formule a2 + b2 = c2.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Triplets pythagoriciens
Le plus simple et le plus connu est le triplet (3,4,5) : 32 + 42 = 52. D'après la réciproque du théorème de Pythagore, un triangle dont les longueurs des côtés sont 3, 4 et 5 est rectangle.
Pythagore de Samos (VIe siècle av. J. -C.) est un des mathématiciens les plus connus de nos jours, notamment grâce à son théorème qui accompagne le quotidien (ou presque) de tout écolier.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs de deux côtés de l'angle droit. Ainsi, si ABC est rectangle en A, alors AB² + AC² = BC².
Pour rappel, la définition du théorème de Thalès : si deux droites parallèles découpent deux droites sécantes, formant 2 triangles, emboîtés ou l'un en face de l'autre, alors les longueurs des côtés de deux triangles sont proportionnelles.
On connaît la longueur L et le périmètre P d'un rectangle. Pour calculer sa largeur l : on calcule le demi-périmètre (P ÷ 2), puis on soustrait la longueur L au demi-périmètre.
Pour calculer la largeur du rectangle, connaissant son aire et sa longueur, on divise l'aire par la longueur.
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
Propriété 1 : Théorème de Pythagore : Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Pour cela, il est nécessaire de connaître la mesure d'un angle et la longueur du côté opposé ou de l'hypoténuse. Pour calculer la longueur d'un côté, on utilise le calcul en croix. AC = AB× tan ABC = 5 × tan 45° = 5 Enfin, on peut utiliser la tangente pour calculer des angles au sein d'un triangle rectangle.