Quand un objet va s'approcher d'un trou noir, il sera attiré de plus en plus à cause de sa forte gravité. Cependant il est possible pour l'objet de s'en échapper. En effet, il existe une limite au delà de laquelle il est impossible de s'échapper du trou noir : on l'appelle l'horizon des événements.
Il s'agit d'un disque de matière – attirée là par le champ de gravité très intense du trou noir et qui gravite autour de lui – juste au-delà de l'horizon des évènements. Au sein du disque d'accrétion, les collisions de matière entrainent une dissipation d'énergie et l'émission de rayons X.
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Pour un trou noir de 5 km de rayon et environ 5 M , les forces de marée varient de 1/16 g à 15 g entre 100000 km et 20000 km de l'horizon des évènements. Cette accélération est encore plus élevée pour les trous noirs plus petits.
Il s'appelle Chuck Clark et il est l'un des meilleurs cosmonautes de la Nasa, l'organisme responsable de la recherche spatiale aux Etats-Unis. Dans 5 ans, cet Américain de 32 ans va vivre une aventure incroyable et très risquée : il s'est porté volontaire pour être le 1er homme à entrer à l'intérieur d'un trou noir !
La relativité générale estime que rien ne peut sortir d'un trou noir, pas même l'information concernant la matière aspirée. Cette opposition de lois physiques concernant les trous noirs, mise évidence par Hawking, porte le nom de "paradoxe de l'information".
Il n'est pas impossible qu'on trou noir ait une sortie pour évacuer tout ce qu'il a aspiré, dont la lumière, c'est le « trou blanc ». Le trou noir, le trou blanc et le couloir entre les deux, dont l'existence a été suggérée par Einstein et Rosen, est appelé « trou de ver ».
Comme vous pouvez le voir ci-dessus, l'espace autour d'un trou noir comporte plusieurs strates. On trouve d'abord l'horizon des événements, le fameux point de non-retour, puis le disque d'accrétion. Il s'agit d'un énorme disque de poussière et de gaz tourbillonnant autour du trou noir.
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
Le principe d'un trou noir est que sa force gravitationnelle est tellement forte que rien ne peut en ressortir, même pas les rayonnements électromagnétiques (lumière visible, rayons X, gamma, etc.) qui se déplacent dans le vide à la vitesse de la lumière.
Où va ce qui entre dans un trou noir ? La matière qui entre dans le trou noir se retrouverait comprimée dans un même point central, une singularité gravitationnelle. Nos conceptions du temps et de l'espace s'effondrent dans cette singularité.
Grâce au télescope Hubble, un trou noir vient d'être découvert à quelques encablures de notre planète après douze années de recherche. Situé à seulement 6.000 années-lumière de la Terre, il a été repéré au cœur de Messier 4, un amas globulaire dans la constellation du Scorpion.
La lumière est souvent identifiée à sa source (ampoule, bougie, soleil ...) ou son impact lumineux sur un objet diffusant (Lune, livre éclairé ...). C'est en fait un rayonnement invisible tant qu'elle ne pénètre pas notre oeil. On peut donc affirmer que la lumière est "invisible de profil".
À l'intérieur des trous noirs et autour d'eux, le champ gravitationnel est tellement puissant que rien ne parvient à s'échapper, ni même la lumière. Cela signifie que les trous noirs n'émettent aucune onde lumineuse et n'ont donc aucune couleur.
Mauvaise nouvelle pour la Terre
Les forces gravitationnelles responsables de la spaghettification entreraient en action : la surface du globe la plus proche du trou noir serait soumise à une force bien supérieure à celle qui s'exercerait de l'autre côté, entraînant l'arrêt de mort de la planète.
Imaginons que l'on puisse avoir un trou noir équivalent à une masse solaire, même si ce n'est pas possible (il faut une masse minimale pour que les trous noirs puissent se former, située entre 3 et 5 masses solaires). Sa température serait « de l'ordre d'un dix-millionième de kelvins ».
Un trou blanc (ou fontaine blanche) est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
Rayonnement de Hawking
Dans le cas de l'effet Hawking, à l'horizon d'un trou noir, les forces de marée engendrées par le champ gravitationnel du trou noir peuvent éloigner la particule de son antiparticule avant qu'elles ne s'annihilent.
Une libération impossible
En appliquant la formule ci-dessus, vous pouvez calculer que sa vitesse de libération serait égale à environ 650000 km/s.
La différence avec les trous noirs est que ces géants ne possèdent pas d'horizon, c'est-à-dire une frontière en deçà de laquelle tout objet, y compris la lumière, ne pourra plus sortir. On peut s'approcher et s'échapper d'une gravastar par exemple.
Surnommé « la Licorne », cet étrange objet stellaire semble être le plus petit trou noir jamais découvert. Il pourrait aider les astrophysiciens à résoudre l'un des plus grands mystères de l'univers. À près de 1 500 années-lumière de la Terre, un petit trou noir orbite autour d'une étoile géante.
Généralement, les trous noirs sont considérés comme sphériques. Et si un corps massif non sphérique venait à s'effondrer, quel serait le résultat ?
Pas n'importe lequel : il s'agit du trou noir supermassif situé au centre de la galaxie Messier 87 (M87), nommé M87*. Ce colosse de 6,5 milliards de fois la masse du Soleil évolue au cœur de sa galaxie, à 55 millions d'années-lumière de la Terre.