De très grandes quantités d'énergie sont libérées par le processus de fusion nucléaire. Pouvoir reproduire ce phénomène sur Terre permettrait en théorie de satisfaire définitivement les besoins énergétiques de l'humanité. C'est précisément l'enjeu majeur de la recherche sur la fusion nucléaire « contrôlée ».
Le principal avantage de la fusion thermonucléaire est qu'elle libère une quantité d'énergie bien plus grande que la fission et ne produit pas de déchets radioactifs pendant des milliers d'années. De plus, le deutérium est quasiment inépuisable (il est présent dans l'eau) et le tritium est facile à produire.
Des atouts énergétiques et écologiques de taille
La fusion nucléaire a recours à des combustibles disponibles et quasi inépuisables (deutérium, tritium, lithium). L'abondance de ces ressources permettra d'écarter le risque de pénurie énergétique et d'assurer l'alimentation en énergie des villes et industries.
Lorsque deux noyaux « légers » se percutent à grande vitesse, ils peuvent fusionner, créant un noyau plus lourd : c'est la fusion nucléaire. Durant l'opération, une partie de l'énergie de liaison des composants du noyau est libérée sous forme de chaleur ou de lumière.
L'énergie de fusion représente l'énergie produite à partir de réactions de fusion nucléaire durant lesquelles deux atomes légers fusionnent pour produire un noyau plus lourd et dégager une certaine quantité d'énergie, principalement sous forme de chaleur.
Aucun risque de fusion du cœur : Un accident nucléaire de type Fukushima ne peut pas se produire dans un réacteur de fusion. Les conditions propices aux réactions de fusion sont difficiles à atteindre ; en cas de perturbation, le plasma se refroidit en l'espace de quelques secondes et les réactions cessent.
On soulignera que la fusion nucléaire ne rejette pas de dioxyde de carbone ni d'autres gaz à effet de serre dans l'atmosphère et qu'avec la fission nucléaire, elle pourrait jouer un rôle dans l'atténuation du changement climatique, en tant que source d'énergie bas carbone.
La fusion nucléaire n'utilise pas de matières fissiles comme l'uranium et le plutonium (le tritium radioactif n'est pas un matériau fissile ni fissionnable). De plus, un réacteur de fusion ne contient pas d'éléments susceptibles d'être utilisés pour fabriquer des armes nucléaires. Pas de fusion du cœur possible.
Le premier inconvénient de la fusion est que, actuellement elle produit moins d'énergie que celle utilisée pour que la réaction ait lieu, même si cette contrainte au niveau énergétique qui est bien sûr avec l'objectif visée par le réacteur ITER d'amplifier la production d'énergie par 10 diminuée, mais même avec cela on ...
L'identification des premières réactions de fusion a été réalisée dès 1932 par Mark Oliphant puis Ernest Rutherford, soit avant la découverte de la fission en 1938 par Otto Hahn et Fritz Strassmann.
Bombardée de neutrons, la couverture en béryllium du tokamak d'Iter va se désagréger rapidement — la durée de vie de ce métal dans un réacteur de fusion serait de cinq à dix ans 11. Il faudra non seulement remplacer ses modules régulièrement, mais évacuer après chaque expérience les poussières de béryllium.
Les pro-nucléaires avancent l'argument que cette technologie serait peu polluante à la différence du charbon par exemple. Ils affirment que le nucléaire n'émet pas de carbone et ne pollue pas l'air. En effet, de la même façon que le photovoltaïque et l'éolien, le nucléaire ne produit pas directement de CO2.
Un technicien de General Fusion travaille sur le système d'injection de plasma de l'un des réacteurs de la société.
ITER est le plus grand projet scientifique mondial des années 2010. Il contiendra le plus grand réacteur à fusion nucléaire du monde lors de son achèvement en 2025.
Selon le calendrier officiel d'ITER, les premiers essais interviendront vers 2025 et seront suivis, s'ils s'avèrent concluants, de nouveaux essais dans les décennies qui suivent. En somme, pas de projets de fusion nucléaire avant 2050, dans le meilleur des cas.
C'est pourquoi les recherches en fusion se concentrent majoritairement sur la réaction entre deux isotopes de l'hydrogène : le deutérium et le tritium, étant la plus « facile » à réaliser bien qu'elle nécessite tout de même d'atteindre une température d'environ 150 millions de degrés.
Le 15 septembre 2022, le Conseil ITER a nommé Pietro Barabaschi le quatrième* directeur général d'ITER Organization. Le nouveau directeur général prendra ses fonctions au mois d'octobre.
La chaleur produite par ces réactions de fission va servir à produire de la vapeur, laquelle va faire tourner une turbine électrique. Ce point est commun à toutes les centrales. Pour arrêter le réacteur, c'est-à-dire pour stopper la réaction en chaîne, il faut agir sur la production des neutrons, ou les capturer.
Deuxième « segment » de la chambre à vide finalisé La deuxième « section » de 40 degrés de la chambre à vide ITER sera finalisé au mois d'avril 2022. Construit autour du secteur n°1(7) fourni par la Corée, ce « sous-assemblage » a été finalisé plus vite que le premier grâce aux enseignements tirés.
La conclusion est simple : si nous voulons libérer de l'énergie nucléaire, il nous faut : Soit assembler des petits noyaux pour en faire de plus gros ; c'est la fusion. Soit casser des gros noyaux pour en faire de moins gros : c'est la fission.
En 2015, des mesures confirment que les réacteurs 1 et 2 ont complètement fondu, l'étendue réelle des dégâts subis par les trois réacteurs ne pourra être constatée que lorsque les conditions d'accès le permettront. Catastrophe de Tchernobyl (Ukraine) en 1986 : fusion complète du cœur du réacteur 4.
Le Comité Industriel ITER (C2I) œuvre pour optimiser les retombées économiques sur la région en développant les relations entre ITER et le tissu industriel local, particulièrement lors des phases de construction et d'assemblage.
la réalisation et l'alimentation du milieu réactif (plasma), sa stabilité, l'obtention des températures nécessaires de 150 à 300 millions de °C, la vitesse (de l'ordre de 1 000 km/s) et le contrôle de trajectoire des particules, l'élimination des impuretés.
D'après la roadmap de l'Union européenne, ITER sera suivi par « DEMO », un démonstrateur de la faisabilité économique de la fusion. Des projets concurrents sont en cours de développement, aux Etats-Unis, au Canada, au Royaume-Uni et en Chine. En cas de réussite, la fusion pourrait changer le cours de la civilisation.