2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. 1er cours offert !
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers.
55 a pour diviseurs : 1, 5,11 et 55. 32 a pour diviseurs : 1, 2, 4, 8, 16 et 32. L'unique diviseur commun de 55 et 32 est 1 : PGCD (55 ; 32) = 1 Réponse : Les entiers 55 et 32 sont premiers entre eux.
Concernant 55, la réponse est : Non, 55 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 55) est la suivante : 1, 5, 11, 55. Pour que 55 soit un nombre premier, il aurait fallu que 55 ne soit divisible que par lui-même et par 1.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51. Pour que 51 soit un nombre premier, il aurait fallu que 51 ne soit divisible que par lui-même et par 1.
Le nombre entier entre 1 et 100 est 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, ...
On dit d'un nombre entier qu'il est premier lorsque ses seuls diviseurs sont l'unité et lui-même. En termes plus imagés, un nombre premier est « insécable », au sens où il n'admet pas de factorisation non triviale. La suite des nombres premiers débutent par 2, 3, 5, 7, 11, 13, 17, 19...
Contrairement au 12, certains nombres ne possèdent que 2 diviseurs, à savoir 1 et lui-même. Ce sont des nombres premiers. Exemple : 13 est un nombre premier, car il a pour diviseur 1 et 13.
Concernant 81, la réponse est : Non, 81 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 81) est la suivante : 1, 3, 9, 27, 81. Pour que 81 soit un nombre premier, il aurait fallu que 81 ne soit divisible que par lui-même et par 1.
Si deux nombres entiers n'ont aucun diviseur commun autre que 1, alors leur pgcd est égal à 1 ; on dit que ces nombres sont premiers entre eux. Quand on divise deux nombres entiers par leur pgcd, on obtient deux nombres premiers entre eux.
Concernant 45, la réponse est : Non, 45 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 45) est la suivante : 1, 3, 5, 9, 15, 45. Pour que 45 soit un nombre premier, il aurait fallu que 45 ne soit divisible que par lui-même et par 1.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Non, 2 255 n'est pas un nombre premier. Par exemple, 2 255 est divisible par 5 : 2 255 / 5 = 451. D'ailleurs, une astuce nous permettait de deviner immédiatement que 2 255 n'est pas premier puisqu'il est divisible par 5 : en effet, un nombre terminant par un 0 ou un 5 est forcément divisible par 5.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Concernant 63, la réponse est : Non, 63 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 63) est la suivante : 1, 3, 7, 9, 21, 63. Pour que 63 soit un nombre premier, il aurait fallu que 63 ne soit divisible que par lui-même et par 1.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
Le nombre 58 (cinquante-huit) est l'entier naturel qui suit 57 et qui précède 59.
Concernant 49, la réponse est : Non, 49 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 49) est la suivante : 1, 7, 49. Pour que 49 soit un nombre premier, il aurait fallu que 49 ne soit divisible que par lui-même et par 1.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 72) est la suivante : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. Pour que 72 soit un nombre premier, il aurait fallu que 72 ne soit divisible que par lui-même et par 1.
Concernant 77, la réponse est : Non, 77 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 77) est la suivante : 1, 7, 11, 77. Pour que 77 soit un nombre premier, il aurait fallu que 77 ne soit divisible que par lui-même et par 1.
Le nombre 57 est : le nombre semi-premier et entier de Blum 3 × 19, un nombre composé deux fois brésilien car 57 = 1117 = 3318, le 3e nombre 20-gonal.