Les nombres entiers et les ensembles de nombres
Bref, l'ensemble des nombres entiers (Z) comprend les nombres entiers positifs, que l'on appelle les nombres naturels (N) , et leurs opposés. Le nombre 8 , le nombre -92 683 et le nombre -11 , ainsi que leurs opposés, font partie des nombres entiers.
L'ensemble des nombres entiers naturels est noté ℕ. Un nombre entier relatif est un nombre entier qui est positif ou négatif. L'ensemble des nombres entiers relatifs est noté ℤ. Un nombre décimal peut s'écrire avec un nombre fini de chiffres après la virgule.
Symbole. Le symbole Q désigne l'ensemble des nombres rationnels. Tous les nombres naturels, entiers et décimaux sont des nombres rationnels.
On désigne par ℂ l'ensemble des nombres complexes et par « i » un élément de ℂ tel que i 2 = −1. Tout nombre complexe z s'écrit de manière unique : z = a + ib avec a ∈ ℝ et b ∈ ℝ.
La construction formelle de cette ensemble est de nouveau obtenue par Dedekind (1831 − 1916) et la notation Z (du mot allemand Zahlen signifiant nombres) est popularisée par le mathématicien polycéphale Bourbaki (né en 1935).
Les nombres irrationnels sont infinis et non répétitifs, tandis que les nombres rationnels sont des décimales finies et répétitives. Voici quelques exemples de nombres rationnels: Le nombre 9 peut être exprimé par 9/1, 9 et 1 étant tous deux des nombres entiers.
Un entier naturel est un nombre positif ou nul, permettant de compter des objets. Exemples : 0, 1, 2, 3, 4, 5, 6, etc. C'est l'ensemble des nombres entiers relatifs. Un entier relatif est, non seulement, un entier naturel, mais se présente aussi comme un entier naturel muni d'un signe positif ou négatif.
Un nombre est rationnel s'il peut s'écrire sous la forme d'un quotient de deux entiers. L'ensemble des nombres rationnels se note Q. Inversement, un nombre est irrationnel lorsqu'il n'est pas rationnel, c'est à dire qu'il ne peut s'écrire sous forme de fraction.
L'ensemble ℚ
C'est l'ensemble des nombres rationnels. Un nombre rationnel est, non seulement, un nombre décimal relatif, mais peut aussi être un nombre qui peut s'exprimer avec le quotient de deux entiers relatifs.
L'ensemble Q a été défini par Peano, il vient de l'italien quotiente (la fraction). Il définit l'ensemble des nombres rationnels (exemples : -3 -2,5 0 1,25 1/3 2,666). Le nombre peut être décimal limité (3/4 = 0,75) ou périodique (2/3 = 0,666...).
Le symbole R désigne l'ensemble des nombres réels. Tous les nombres naturels, entiers, décimaux et rationnels sont des nombres réels.
La manière la plus simple de décrire un ensemble « fini » est de lister ses éléments entre accolades. L'ensemble est alors défini en extension. Par exemple {1,2} représente l'ensemble dont les éléments sont 1 et 2. L' ordre des éléments ne revêt aucune importance ; par exemple, {1, 2} = {2, 1}.
En mathématiques, une fraction est un moyen d'écrire un nombre rationnel sous la forme d'un quotient de deux entiers. La fraction ab désigne le quotient de a par b (b≠0).
Par exemple 1/2, 12,45 et 0,415464 sont des nombres décimaux. Par contre, le nombre 1/3 = 0,3333333... n'est pas décimal, puisque qu'il a une infinité de 3 après la virgule.
Un nombre relatif positif s'écrit avec le signe + ou sans signe. Un nombre relatif négatif s'écrit avec le signe –. 0 est le seul nombre à la fois positif et négatif. Deux nombres relatifs qui ne diffèrent que par leur signe sont opposés.
Les nombres naturels, représentés par N , regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble. Les nombres naturels représentent tous les nombres entiers positifs.
Ils sont donc tous les deux divisibles par 2 et ne sont donc pas premiers entre eux (car ils ont un diviseur commun différent de 1 et −1). Ceci est une contradiction (étape n°2). Ainsi, √2 ne peut pas être un nombre rationnel ; c'est donc un nombre irrationnel.
1,75 et 1,5 sont des nombres décimaux car il s'écrivent avec une virgule et ils sont totalement connus. 3 est un nombre décimal car il peut s'écrire 3,0 (donc avec une virgule) et il est totalement connu.
L'inverse de 4/5 est 5/4.
9999 est le plus grand nombre entier ( naturel ) à 4 chiffres !
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
En mathématiques, un nombre entier relatif se compose d'un entier naturel précédé d'un signe positif (+) ou négatif (−). Les entiers positifs s'identifient aux entiers naturels (1, 2, 3, etc.), tandis que les entiers négatifs sont leurs opposés (− 1, − 2, − 3, etc.).