En mathématiques, un entier relatif, un entier rationnel ou simplement un nombre entier est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à 0 sur un axe orienté.
L'ensemble ℤ vient de l'allemand zahlen qui signifie compter. Ainsi défini par Dedekind, il recouvre l'ensemble des nombres entiers relatifs (exemples : -3 -1 0 1 5). ℕ est inclus dans ℤ. L'ensemble ℚ a été défini par Peano, il vient de l'italien quotiente (la fraction).
Qu'est-ce que l'ensemble Z ? Z est l'ensemble des nombres entiers relatifs, c'est à dire positifs, négatifs ou nuls. Z∗ (Z étoile) est l' ensemble des entiers relatifs sauf 0 (zéro). L'ensemble N est inclus dans l'ensemble Z (car tous les nombres entiers naturels font partie des entiers relatifs).
L'ensemble des nombres entiers naturels est noté ℕ. Un nombre entier relatif est un nombre entier qui est positif ou négatif. L'ensemble des nombres entiers relatifs est noté ℤ. Un nombre décimal peut s'écrire avec un nombre fini de chiffres après la virgule.
Un nombre entier relatif est un nombre entier qui peut être positif, négatif ou nul. L'ensemble des nombres relatifs se note . (« Z » est l'initiale du mot « Zahl » qui signifie « nombre » en allemand). On dit aussi un entier relatif au lieu de nombre entier relatif.
Oui, 0 appartient à Q. En effet, 0 peut être écrit comme la fraction 0/1, où 0 est un entier et 1 est un entier non nul.
Le chiffre 0 fait aussi partie des nombres entiers relatifs, mais il est dépourvu de signe. Les signes + et − indiquent la position du nombre par rapport à 0 sur un axe orienté.
La construction formelle de cette ensemble est de nouveau obtenue par Dedekind (1831 − 1916) et la notation Z (du mot allemand Zahlen signifiant nombres) est popularisée par le mathématicien polycéphale Bourbaki (né en 1935).
L'ensemble ℕ
C'est l'ensemble des nombres entiers naturels. Un entier naturel est un nombre positif ou nul, permettant de compter des objets. Exemples : 0, 1, 2, 3, 4, 5, 6, etc.
Le symbole R désigne l'ensemble des nombres réels. Tous les nombres naturels, entiers, décimaux et rationnels sont des nombres réels.
Grand N est actuellement une revue Interface reconnue par l'HCERES.
2 L'ensemble Z
C'est l'ensemble des nombres entiers relatifs. Un entier relatif est, non seulement, un entier naturel, mais se présente aussi comme un entier naturel muni d'un signe positif ou négatif. Exemples : …. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7, +8, etc.
Il peut être positif ou négatif. Par exemple 1/2, 12,45 et 0,415464 sont des nombres décimaux. Par contre, le nombre 1/3 = 0,3333333... n'est pas décimal, puisque qu'il a une infinité de 3 après la virgule.
Construction de l'ensemble Z
des entiers naturels, muni de la loi interne addition, est un monoïde commutatif ; donc notre but est simplement de rajouter un opposé (élément symétrique pour l'addition) pour chaque entier non nul. Il ne s'agit pas de rajouter brutalement un élément, il faut aussi définir l'addition.
L'ensemble des nombres réels possédant une image par une fonction f est appelé ensemble de définition de la fonction f . De façon formelle, soit f une fonction à valeurs réelles, l'ensemble de définition de f est l'ensemble des réels x pour lesquels l'image f ( x ) existe ou pour lesquels f ( x ) a un sens.
Nombre décimal :
Les nombres décimaux sont les nombres qui peuvent s'écrire avec une virgule et qui ont un nombre fini de chiffres après la virgule. 1 , 6 1,6 1,6 ; 2 , 978 2,978 2,978 ; 24 , 19 24,19 24,19 et 102 , 4 102,4 102,4 sont des nombres décimaux car ils ont un nombre fini de chiffres après la virgule.
√2 et π sont des exemples de nombres qui ne peuvent pas s'exprimer sous la forme ab et dont le développement décimal est infini et non-périodique. Il ne font donc pas partie de l'ensemble des nombres rationnels. Ce sont des nombres irrationnels.
Selon les acceptions, la liste des entiers naturels est donc : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; …
La suite des nombres naturels est : N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …}. Le nombre 0 est un nombre naturel. L'ensemble des nombres naturels est un ensemble infini. L'ensemble des nombres naturels est un ensemble fermé pour les opérations d'addition et de multiplication.
Définition. Étant donné un nombre complexe z non nul, un argument de z est une mesure (en radians, donc modulo 2π) de l'angle : où M est l'image de z dans le plan complexe, c'est-à-dire le point d'affixe z.
Les sous-groupes de (Z,+) sont les nZ, pour n ∈ Z. L'ensemble nZ désigne l'ensemble des multiples de n : nZ = { k·n | k ∈ Z } .
L'ensemble (ℤ, +, ×) n'est pas un corps car la plupart des éléments non nuls de ℤ ne sont pas inversibles : par exemple, il n'existe pas d'entier relatif n tel que 2n = 1 donc 2 n'est pas inversible.
Comparaison de nombres relatifs
Entre deux nombres positifs, le plus petit est celui qui a la plus petite distance à zéro. Entre deux nombres négatifs, le plus petit est celui qui a la plus grande distance à zéro. Entre deux nombres de signes différents, le plus petit est toujours le nombre négatif.
Le plus grand nombre relatif est toujours celui qui se trouve le plus à droite sur la droite graduée.
En français, on utilise les chiffres arabes (0 à 9) et, dans certains contextes, les chiffres romains (I, V, X, L, C, D, M).