En mathématiques, un vecteur est un objet généralisant plusieurs notions provenant de la géométrie, de l'algèbre, ou de la physique. Rigoureusement axiomatisée, la notion de vecteur est le fondement de la branche des mathématiques appelée algèbre linéaire.
Vect(A) est donc l'intersection de tous les sous-espaces vectoriels de E contenant A. Vect(A) est une partie de E non vide (même lorsque A est l'ensemble vide) car le vecteur nul 0E, en tant que somme vide, est combinaison linéaire d'éléments de A.
Définition de vecteur nom masculin
Mathématiques Segment de droite orienté, formant un être mathématique sur lequel on peut effectuer des opérations. Grandeur, direction, sens d'un vecteur.
Par définition u s'écrit comme une combinaison linéaire de vecteurs de A et v s'écrit comme une combinaison linéaire d'éléments de B, donc w = u + v s'écrit comme une combinaison linéaire d'éléments de A ∪ B. Donc F + G ⊂ Vect(A ∪ B). Conclusion : F + G = Vect(A ∪ B).
Norme d'un vecteur
Étant donné le vecteur v → = ( v x v y ) , la norme de ce vecteur se calcule grâce à la formule ‖ v → ‖ = v x 2 + v y 2 .
Les caractéristiques d'un vecteur sont sa direction, son sens et sa norme. Un vecteur qui a le même point pour origine et pour extrémité est appelé vecteur nul et est noté . Ce vecteur n'a pas de direction, pas de sens et sa norme est égale à 0. Deux vecteurs égaux ont la même direction, le même sens et la même norme.
Un espace vectoriel est un ensemble formé de vecteurs, de sorte que l'on puisse additionner (et soustraire) deux vecteurs u, v pour en former un troisième u + v (ou u − v) et aussi afin que l'on puisse multiplier chaque vecteur u d'un facteur λ pour obtenir un vecteur λ · u.
Pour démontrer que F est un sous-espace vectoriel de E , on applique la caractérisation des sous-espaces vectoriels, c'est-à-dire qu'on vérifie que 0E∈F 0 E ∈ F et que, pour tout couple (x,y)∈F2 ( x , y ) ∈ F 2 et tout scalaire λ∈K λ ∈ K , on a {x+y∈Fλx∈F.
Inversément, une famille est liée lorsqu'il existe une combili de ses vecteurs qui donne 0 et dont les coefficients ne sont pas tous nuls. )+(−1)(1, 2, 4) = (0, 0, 0) avec des coefficients qui ne sont pas tous nuls (ils sont même tous non nuls). Noter qu'une famille qui contient 0 est toujours liée.
Vocabulaire Vecteur : objet mathématique représenté par un segment fléché dont les caractéristiques sont : le point d'application, la direction, le sens et la norme (dite aussi valeur ou intensité).
En physique, les vecteurs sont grandement utilisés, ils permettent de modéliser des grandeurs comme une force, une vitesse, une accélération, une quantité de mouvement ou certains champs (électrique, magnétique, gravitationnel…).
Une partie F d'une algèbre E est une sous-algèbre de E si, munie des lois + , × , ⋅ héritées de E , c'est une algèbre. Si E et F sont deux algèbres, une application f:E→F f : E → F est un morphisme d'algèbre si c'est un morphisme d'anneaux et une application linéaire.
Le point origine du vecteur A B → \overrightarrow{AB} AB (ici le point A) est le point de départ qui en caractérise le sens. Le point extrémité de A B → \overrightarrow{AB} AB (ici le point B) est le point d'arrivée qui en caractérise le sens.
(1) H est un hyperplan si, et seulement si, c'est le noyau d'une forme linéaire non nulle. (2) Si H = Ker(ϕ) = Ker(ψ), alors il existe λ ∈ R∗ tel que ϕ = λψ.
En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V.
Pour montrer qu'un ensemble E est un e.v., il suffit généralement de montrer que E est un s.e.v. d'un autre e.v. bien connu (ex. : fonctions ayant une certaine propriété, matrices d'une forme particuli`ere, ...) ou une variante (u + v ∈ E et λu ∈ E, ou : λu + µv ∈ E).
Bonne définition La dimension du sous-espace vectoriel des solutions d'un syst`eme d'équations homog`enes est donnée par la formule : Dimension (du sev des solutions) = nombre d'inconnues -rang du syst`eme d'équations.
Plus généralement, un sous-espace vectoriel de $\mathbb R^2$ est une droite passant par $(0,0)$, ou $\mathbb R^2$ lui-même, ou encore le singleton $\{(0,0)\}$. $E_5$ est une parabole et n'est donc pas un sous-espace vectoriel. Posons $F=\{(x,y,z)\in\mathbb R^3;\ 2x+3y-5z=0\}$ et $G=\{(x,y,z)\in\mathbb R^3;\ x-y+z=0\}$.
Propriétés des espaces vectoriels de dimension finie
Toute famille libre de E a au plus n vecteurs et toute famille génératrice en a au moins n. Pour qu'une famille d'exactement n vecteurs soit une base, il suffit qu'elle soit libre ou génératrice : elle est alors les deux.
Par définition, les combinaisons linéaires d'éléments d'un sev E restent dans E. On a donc bien A ⊂ E ⇒ Vect(A) ⊂ Vect(E) = E si E est un sev. Vect(A) = {λ−→v, λ ∈ R} est la droite vectorielle engendrée par −→ v si −→ v = −→ 0 .
Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
On appelle vecteur normal de (P) tout vecteur (non nul) orthogonal à tous les vecteurs directeurs du plan. Généralement, on peut obtenir un vecteur normal de deux façons différentes : en faisant le produit vectoriel de deux vecteurs directeurs non colinéaires du plan; à partir d'une équation cartésienne du plan.
Quel que soit le vecteur →u, on a 0×→u=→0, donc le vecteur nul →0 est colinéaire à tous les vecteurs. Propriété : Deux vecteurs →u(xy) et →v(x'y') sont colinéaires si et seulement si leur coordonnées sont proportionnelles, c'est à dire si et seulement si xy' = x'y.