Un pourcentage de t % traduit une situation de proportionnalité de coeffi- cient t 100 . Donc appliquer un taux de t % revient à multiplier par t 100 . Dans une classe de 30 élèves, 60 % des élèves pratiquent un sport. On calcule 30 × 60 100 = 18.
Les pourcentages
Un pour cent (ou 1 %) correspond au centième du total ou de l'ensemble, de sorte qu'il est obtenu en divisant le total ou le nombre entier par 100. 70 exprimé en % de 250 = (70 x 100) ÷ 250 = 28 %.
Un pourcentage représente une valeur exprimée par rapport à 100. 50 % signifient 50 divisé par 100. C'est donc la moitié. Le calcul de pourcentage consiste donc à quantifier cette proportion à partir de deux valeurs : la valeur partielle (la partie) et la valeur totale (le tout).
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la deuxième ligne en multipliant les nombres correspondants de la première ligne par un même nombre. (Dans cet exemple ce nombre est 2,5 car 5/2 = 2,5 ; 7,5/3 = 2,5 ; 10/4 = 2,5 ; …).
Selon la règle de proportionnalité, aussi appelée règle de trois, les produits des nombres en diagonale sont égaux soit a × d = b × c.
Définition : Deux grandeurs sont proportionnelles si on peut calculer les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité. Exemple : La masse d'un morceau de viande et son prix.
Calculer une proportion Méthode
Afin de calculer une proportion, on divise l'effectif du caractère recherché par l'effectif total.
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
Un pourcentage est un rapport entre deux nombres (A et B par exemple) et s'apparente quelques peu à une division. Pour calculer la part que représente A dans B, on divise A par B. Il ne reste ensuite qu'à transformer cette fraction en pourcentage en le multipliant par 100.
Le résultat est exprimé en pourcentage (avec des chiffres absolus, on parlerait seulement d'une différence), et est appelé taux de variation, ou encore variation en pourcentage. Elle est calculée comme suit: [(nombre au moment ultérieur ÷ nombre au moment antérieur) — 1] × 100.
Pour obtenir 10% d'un prix, il suffit de le diviser par dix. Et pour cela, on décale simplement la virgule d'un rang vers la gauche. Sur un produit vendu 69,00€; 10% feront donc 6,9€. Pour avoir 30%, on va multiplier ce chiffre par trois : la remise représente donc 20,70€.
Augmenter une grandeur de x% revient à la multiplier par ( 1+ x 100 ) . Diminuer une grandeur de x% revient à la multiplier par ( 1− x 100 ) . Exemples : • Augmenter une grandeur de 3% revient à la multiplier par 1+ 3 100 = 1,03. Augmenter une grandeur de 100% revient à la multiplier par 1+ 100 100 = 2.
Pour trouver cet inverse, il faut ajouter 1 devant le pourcentage , puis diviser le nombre par 100 .
Une proportion peut être exprimée en pourcentage en multipliant sa valeur par 100. Les proportions sont utiles pour comparer un nombre avec un total. Par exemple, dans un auditoire de 50 personnes, 5 sont gauchères.
Dans un tableau de proportionnalité, les produits en croix sont égaux. Si ce tableau est un tableau de proportionnalité, alors a ×d = b ×c.
Situation de proportionnalité :
Deux grandeurs sont proportionnelles lorsque les valeurs de l'une sont obtenues en multipliant les valeurs de l'autre par un même nombre non nul appelé coefficient de proportionnalité. On dit alors qu'il y a situation de proportionnalité.
Compléter un tableau de proportionnalité
On sait que pour passer de la première ligne à la deuxième ligne du tableau, il faut multiplier par le coefficient. Si on divise un nombre de la deuxième ligne avec le nombre qui lui correspond dans la première ligne, on va donc retrouver le coefficient multiplicateur.
Tableau de proportionnalité
Par définition, on passe de la première ligne à la seconde en multipliant par un même nombre, pour chaque colonne. Ce nombre est appelé coefficient de proportionnalité. Inversement, on passe de la seconde ligne à la première en divisant par le coefficient de proportionnalité.
Dans ce cas, faites un produit en croix : montant de la somme avec augmentation x 100/valeur initiale. Par exemple pour 50 euros avec application du pourcentage sur une base initiale de 40 euros (traduit par 100 en pourcentage), on obtient 125 (125% du montant de base) en équivalence pour les 50 euros.
Il rappelle que dans un tel cas, le produit du premier nombre par le quatrième doit être égal au produit du second par le troisième. Il établit alors la règle : multiplie le troisième par le second et divise le par le premier, ainsi tu obtiendras le quatrième.