La tangente d'un angle aigu dans un triangle rectangle est un rapport de longueurs qui ne dépend que de la mesure de l'angle. On le calcule à partir des longueurs du côté adjacent et du côté opposé à l'angle.
La tangente d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par son côté adjacent.
y=f′(a)(x−a)+f(a).
Le cosinus d'un angle aigu est égal au rapport de la longueur du côté adjacent à l'angle par celle de l'hypoténuse du triangle.
On met la calculatrice en mode degré ; on tape 100, inv puis tan. L'affichage est : 89,4270613. Le résultat est : l'angle qui a pour tangente 100 mesure 89,4° (au dixième près par défaut).
Pour convertir l'arctangente en degrés, multipliez le résultat par 180/PI( ) ou utilisez la fonction DEGRES.
La tangente d'un angle aigu est égale au quotient de son sinus par son cosinus.
Pour déterminer la valeur du sinus ou d'un cosinus d'un angle à l'aide de la calculatrice, il convient de mettre la calculatrice sur le bon mode (degré ou radian) puis d'utiliser les touches \textcolor{Red}{cos} et \textcolor{Red}{sin}. Calculer \cos\left(40°\right) à l'aide de la calculatrice.
[AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2.
Un angle est aigu si son amplitude est inférieure à 90∘.
Rendez l'expression négative car la tangente est négative dans le quatrième quadrant. La valeur exacte de tan(45) est 1 .
On peut résumer ainsi chacune de ces formules trigonométriques : Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse. Tangente(angle) = Opposé ÷ Adjacent.
La tangente d'un angle aigu dans un triangle rectangle est un rapport de longueurs qui ne dépend que de la mesure de l'angle. On le calcule à partir des longueurs du côté adjacent et du côté opposé à l'angle.
Le cosinus d'un angle aigu dans un triangle rectangle est le quotient de son côté adjacent par l'hypoténuse.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
On peut donc écrire que le sinus de 30 degrés est égal au côté opposé — c'est 𝑏 — divisé par l'hypoténuse — c'est 𝑐. Puisqu'on a ces valeurs, on peut remplacer 𝑏 par un et 𝑐 par deux, ce qui donne que le sinus de 30 degrés est égal à un sur deux, ou un demi.
Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(60) est √32 . Le résultat peut être affiché en différentes formes.
Ces fonctions inverses se notent cos−1, sin−1 et tan−1 ou encore arccos, arcsin et arctan. Pour y accéder avec la calculatrice, on saisira la touche 2nde ou shift ou inv avant d'utiliser les touches cos , sin ou tan .
tg x = sin x / cos x. cotg x = cos x / sin x. 1 + tg² x = 1 / cos² x. 1 + cotg² x = 1 / sin² x.
En géométrie, le calcul du cosinus d'un angle est utilisé en trigonométrie. Il peut servir par exemple à couper un gâteau en plusieurs parts parfaitement égales.