Deux vecteurs ⃗ u (x;y) et ⃗ v (x′;y′) sont colinéaires si et seulement si : Méthode 1 : x × y ′ − x ′ × y = 0 x\times y' - x'\times y=0 x×y′−x′×y=0. Méthode 2 : il existe une réel k tel que : x ′ = k x x'=kx x′=kx et y ′ = k y y'=ky y′=ky.
Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Les vecteurs ⃗ u et ⃗ v sont colinéaires si et seulement si l'un est le produit de l'autre par un réel, c'est-à-dire s'il existe un réel k tel que ⃗ ⃗ v =ku . Le réel k est le coefficient de colinéarité. Ainsi, deux vecteurs non nuls sont colinéaires lorsqu'ils ont la même direction.
Donc, si le vecteur →u est colinéaire au vecteur →v , alors il existe un scalaire k tel que →u=k→v u → = k v → . Si on veut utiliser cette caractéristique pour savoir si deux vecteurs sont colinéaires, il faut être en mesure de trouver la valeur de ce scalaire k. k .
On trouve les coordonnées de chaque vecteur. On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.
Exemples : a) ( 2 ; – 3 ) et ( 10 ; – 15 ) sont colinéaires en effet 10 = 2 x 5 et –15 = –3 x 5 donc = 5 . c) (4 ; 5 ) et (8 ; –10 ) ne sont pas colinéaires en effet : ≠ 0 et ≠ 0 et s'il existe tel que = , alors 8 = x 4 donc = 2 et -10 = x 5 donc = -2 .
La norme d'un vecteur est sa longueur. Nous pouvons calculer la norme de tout vecteur en deux dimensions en utilisant le théorème de Pythagore. La norme du vecteur 𝐯 est égale à la racine carrée de 𝑎 au carré plus 𝑏 au carré, où 𝑎 et 𝑏 sont les deux composantes du vecteur.
Les vecteurs ⃑ 𝐴 et ⃑ 𝐵 sont parallèles si, et seulement si, ce sont des multiples scalaires l'un de l'autre : ⃑ 𝐴 = 𝑘 ⃑ 𝐵 , où 𝑘 est un nombre réel non nul.
Le produit mixte de trois vecteurs u, v, w est le nombre [u, v, w]=(u ∧ v) · w. Soit B = (i,j, k) une base orthonormée de l'espace et u, v, w trois vecteurs se décomposant selon u = x1i + y1j + z1k, v = x2i + y2j + z2k, w = x3i + y3j + z3k.
Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs. En effet : α = π et cos π = - 1 .
Dire que deux vecteurs ⃗u et ⃗v sont colinéaires équivaut à dire que, dans tout repère du plan, leurs coordonnées sont proportionnelles. Soient ⃗u (x;y) et ⃗v (x'; y') deux vecteurs colinéaires . Donc, il existe un réel k tel que ⃗v=k ⃗u . Donc : x' = k x et y' = k y.
Dans un repère orthonormé, le produit scalaire de deux vecteurs est égal à la somme des produits de leurs composantes correspondantes. →u⊙→v=uxvx+uyvy. →u⊙→v=uxvx+uyvy+uzvz.
Vecteurs colinéaires
= k . Deux vecteurs sont colinéaire s'ils ont la même direction, le même sens, et s'ils sont proportionnels.
Définition 1.
Deux droites ont la même direction si et seulement si elles sont parallèles ou confondues. On dit que deux vecteurs et sont colinéaires lorsqu'ils ont la même direction. Par conséquent, deux droites qui n'ont pas la même direction sont sécantes.
Le déterminant est l'une des techniques qui permet de savoir si deux vecteurs sont colinéaires. S'ils se sont, le déterminant est nul. Et réciproquement, si le déterminant est nul les vecteurs sont colinéaires.
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Le déterminant se calcule en multipliant les deux termes de la diagonales : a x d, puis les deux autres : b x c. On soustrait alors, ce qui donne det(A) = a x d – b x c. Rien de bien compliqué, il faut juste connaître la formule !
La valeur absolue du produit mixte de trois vecteurs est le volume du parallélépipède engendré par ces trois vecteurs : v o l u m e = | | ⃑ 𝐴 ⋅ ⃑ 𝐵 × ⃑ 𝐶 | | . Il est important de noter que trois vecteurs coplanaires ne définissent aucun parallélépipède, et que par conséquent, leur produit mixte est nul.
Un déterminant se trouve devant un nom ou devant un adjectif suivi d'un nom. 2. Une préposition est un déterminant.
Propriétés : Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
La norme du vecteur ⃑ 𝑣 , notée ‖ ‖ ⃑ 𝑣 ‖ ‖ , est la longueur du vecteur ou la distance entre ses extrémités. En particulier, un vecteur unitaire est un vecteur de norme égale à 1.
le produit vectoriel de deux vecteurs est nul si et seulement si ces deux vecteurs sont colinéaires.
Si nous avons deux vecteurs u → = ( u x u y u z ) et v → = ( v x v y v z ) , la formule du produit vectoriel est donnée par u → ∧ v → = ( u 2 v 3 − u 3 v 2 u 3 v 1 − u 1 v 3 u 1 v 2 − u 2 v 1 ) Pour te rappeler de cette formule tu peux également considérer le produit vectoriel comme étant le déterminant de la matrice ...
En France, les normes sont élaborées et éditées par l'AFNOR qui coordonne le système de normalisation. Au niveau international, c'est l'ISO.