Prenons par exemple le calcul de la factorielle d'un nombre, une fonction mathématique qui pour une valeur entière positive, retourne le produit de tous les entiers entre 1 et cette valeur. Pour une valeur nulle, la fonction retourne 1. Par exemple, la factorielle de 5, que l'on note "5!", vaut 1*2*3*4*5 = 120.
Calculer la factorielle d'un nombre entier n
La factorielle d'un entier naturel n, avec n > 2, est égale au produit de tous les entiers compris entre 1 et n. Il vient alors naturellement : n ! × (n+1) = 1 × 2 × ... × (n−1) × n × (n+1) = (n+1) !
Utiliser la méthode itérative pour calculer la factorielle d'un nombre en C++ La factorielle du nombre est calculée en multipliant tous les nombres entiers en commençant par un et en incluant le nombre donné. Notez que l'algorithme simple consiste à utiliser l'itération en utilisant l'une des instructions de boucle.
Valeur de 0!
= 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
La fonction pow() en C est utilisée pour trouver la puissance d'un nombre donné. La fonction pow() se trouve dans le fichier d'en-tête « math. h ».
Pour calculer la factorielle d'un nombre, utilisez la fonction FACT.
- L'inverse de 45 est 1/45 soit 1 : 45 = 0.02222... - L'inverse de 89 est 1/89 soit 1 : 89 = 0.0112... - L'inverse de -9 est 1/-9 soit 1 : (-9) = -0.111...
La notation factorielle permet de simplifier l'écriture de l'opération mathématique à effectuer. Plutôt que d'écrire le produit de tous les nombres entiers impliqués, il suffit d'écrire l'entier dont on veut calculer la factorielle suivi d'un point d'exclamation.
Par exemple, factorielle de 5 est égale à 1 x 2 x 3 x 4 x 5 = 120. Ces nombres sont souvent utilisés pour compter des objets selon leur placement. Pour simplifier, on les note avec un point d'exclamation, ce qui évite de redonner toutes les multiplications. Par exemple: 5!
Re : factorielle 100
Tu décomposes en facteurs premiers tous les termes du produit et ensuites tu les multiplies ensemble pour avoir la décomposition en facteurs premiers du produit entier.
Sans le savoir encore, Gauss a découvert la formule permettant de calculer la somme des termes d'une série arithmétique. Il fait : 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 … 50 + 51 =101 soit 100 x 101 = 10100 et 10100 : 2 = 5050 car la suite est comptée deux fois.
Un argument est un objet, donné à une fonction ou à une méthode lors de son appel. Il existe deux types d'arguments : les arguments nommés et les arguments positionnels.
À l'aide du PGCD
donc PGCD(a, b) = d. Ainsi, l'algorithme d'Euclide pour le calcul du PGCD permet de calculer aussi le PPCM. 48 = 12 × 4 + 0. Donc PGCD(60, 168) = 12 et PPCM(60, 168) = (60×168)/12 = 840.
- Le PPCM de a et b est égal au produit de tous les facteurs premiers des deux décompositions affectés de leur plus grand exposant. Exemple : Calcul du PGCD de 1960 et 2016. On décompose 1960 et 2016 en facteurs premiers. a = 23 x 5 x 72 et b = 25 x 32 x 7.
Calcul du PPCM de 2 nombres entiers
(PPCM de a et b) = a*b / (PGCD de a et b).
Lorsque l'exposant (a) est positif, alors la puissance de dix 10a correspond au nombre 1 suivi d'un nombre de zéros correspondant au chiffre a. Quelques exemples : 103 correspond au nombre 1 suivi de 3 zéros donc 103 = 1 000. 105 correspond au nombre 1 suivi de 5 zéros donc 105 = 100 000.
Bien qu'en C, il existe une fonction «Sqrt» dans l'entête math. h permettant de calculer la racine carré, il peut quand même être amusant d'effectuer se genre de calcul nous même.
Un nombre entier qui commence par 1 suivi d'un ou plusieurs 0 peut se transformer en puissance de 10 positive. La base de la puissance est 10, tandis que l'exposant est positif. La quantité de 0 derrière le chiffre 1 indique la valeur de l'exposant.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Les puissances de 2 sont les seuls nombres qui ne sont pas divisibles par un nombre impair autre que 1. Les chiffres des unités des puissances successives de 2 forment une suite périodique (2, 4, 8 et 6). Chaque puissance de 2 est une somme de coefficients binomiaux : Le nombre réel 0,12481632641282565121024…