Le n est un entier naturel (un entier naturel est un nombre sans virgule et forcément positif, comme 1 ; 2 …) ; la fonction factorielle est le produit des nombres entiers strictement positifs inférieurs ou égaux à n. La formule mathématique liée à la fonction factorielle est la suivante : (n+1)! = (n+1)n!
La puissance d'un nombre se calcule en multipliant le nombre par lui-même. Une puissance est composée de 2 éléments: Une base qui indique le nombre à multiplier par lui-même. Un exposant qui indique combien de fois le nombre est multiplié par lui-même.
Sn = n (n + 1) 2 . Au passage, on a obtenu une formule pour la somme des n premiers entiers naturels pairs : 2+4+6+ ··· + (2n − 2) + 2n = [(n + 1) × n − 1 × 0] = n (n + 1).
Calculer la factorielle d'un nombre entier n
La factorielle d'un entier naturel n, avec n > 2, est égale au produit de tous les entiers compris entre 1 et n. Il vient alors naturellement : n ! × (n+1) = 1 × 2 × ... × (n−1) × n × (n+1) = (n+1) !
Le coefficient binomial s'écrit (nk) ou Ckn C n k se lit k parmi n et est défini par la formule (nk)=n!k!
Le nombre de combinaisons des n éléments d'un ensemble E pris k à la fois est donné par la relation suivante : Ckn=n!k! (n−k)!
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
Sans le savoir encore, Gauss a découvert la formule permettant de calculer la somme des termes d'une série arithmétique. Il fait : 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 … 50 + 51 =101 soit 100 x 101 = 10100 et 10100 : 2 = 5050 car la suite est comptée deux fois.
1 Si n est pair (c'est-à-dire qu'il existe un entier k tel que n = 2k) alors n2 est pair donc n2 +n est pair. Si n est impair (c'est-à-dire qu'il existe un entier k tel que n = 2k + 1) alors n2 est impair (car n2 = 2(2k2 + 2k)+1) donc n2 + n est pair. Donc, pour tout n ∈ N, n2 + n est pair.
Exemple : 15% est tout simplement égal à 15 divisé par 100, soit 0,15. 150% est donc égal à 150/100, soit 1,5.
Les entiers naturels sont donc, outre zéro, ceux que l'on commence à énumérer avec la comptine numérique : un, deux, trois, quatre… Au milieu : Pour lever l'ambiguïté au sujet de la prise en compte de zéro comme entier naturel, l'ensemble est parfois noté « N0 ».
Le degré de la puissance d'un nombre s'exprime par un exposant qu'on écrit à droite du nombre et un peu au-dessus. Par exemple, 32 = 9, se lit trois au carré ou 3 à la puissance 2 ; 9 est une puissance de 3.
On peut remarquer que 1024 = 210 est proche de 1000 = 103, à 2,4% près. Cette coïncidence permet plus généralement d'estimer les puissances successives de 2 à partir des puissances successives de 10.
Le symbole d'appartenance « ∈ » est un symbole mathématique introduit par Giuseppe Peano pour l'appartenance en théorie des ensembles. Sa graphie correspond à celle de la lettre grecque epsilon en Europe continentale à cette époque.
Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪.
Le symbole euro (€) est le symbole monétaire représentant l'euro.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Re : factorielle 100
Tu décomposes en facteurs premiers tous les termes du produit et ensuites tu les multiplies ensemble pour avoir la décomposition en facteurs premiers du produit entier.
La notation factorielle permet de simplifier l'écriture de l'opération mathématique à effectuer. Plutôt que d'écrire le produit de tous les nombres entiers impliqués, il suffit d'écrire l'entier dont on veut calculer la factorielle suivi d'un point d'exclamation.