Afin de calculer le module ∣z∣ et un argument θ d'un nombre complexe z, on détermine sa forme algébrique z=a+ib.
Théorème - Définition : On peut toujours écrire un nombre complexe z sous la forme : z = |z|(cos(θ)+i sin(θ)), avec θ = arg(z). On appelle ceci la forme trigonométrique de z. cos(θ) = a |z| , sin(θ) = b |z| . Exemple : Calculer |z| et arg(z) pour z = 1+i.
Remarques : - le nombre complexe 0 n'a pas d'argument. - l'argument d'un réel non nul est de la forme k où k est un entier relatif. - l'argument d'un imaginaire pur est de la forme k /2 où k est un entier relatif.
La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide.
On appelle argument d'un nombre complexe non nul z une mesure θ de l'angle orienté ( u → , OM → ) . C'est un nombre réel défini modulo 2 π et noté arg ( z ) . On a donc : z = ∣ z ∣ . ( cos ( θ ) + i sin ( θ ) ) .
Le conjugué d'un nombre complexe z=a+ib z = a + i b est noté avec une barre ¯¯¯z (ou parfois avec une étoile z∗ ) et est égal à ¯¯¯z=a−ib z ¯ = a − i b avec a=R(z) a = ℜ ( z ) la partie réelle et b=I(z) b = ℑ ( z ) la partie imaginaire.
Image, affixe d'un vecteur
À tout nombre complexe z = a + i b ∈ C est associé le vecteur du plan de coordonnées . À tout vecteur du plan de coordonnées est associé le complexe z = a + i b appelé affixe du vecteur .
En mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le complexe associé à un point est appelé l'affixe de ce point.
Le module d'un réel est sa valeur absolue. Le module de 1 + i est √2.
Définition : Soit un nombre complexe z = a + ib. On appelle module de z, le nombre réel positif, noté z , égal à a2 + b2 . M est un point d'affixe z. Alors le module de z est égal à la distance OM.
Illustration animée : Calcul d'une distance AB. Un vecteur est défini par sa direction, son sens et sa longueur. La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe.
On peut la comprendre comme sa distance à zéro ; ou comme sa valeur quantitative, à laquelle le signe ajoute une idée de polarité ou de sens (comme le sens d'un vecteur). Par exemple, la valeur absolue de –4 est 4, et celle de +4 est 4.
A noter que l'inverse de 0 n'existe pas car il est impossible de diviser par 0 en mathématiques. En effet, la division par 0 ne représente rien car on ne peut pas diviser une partie par quelque chose qui n'existe pas.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
En informatique, l'opération modulo, ou opération mod, est une opération binaire qui associe à deux entiers naturels le reste de la division euclidienne du premier par le second, le reste de la division de a par n (n ≠ 0) est noté a mod n (a % n dans certains langages informatiques).
Un "modulo" ça n'existe pas, c'est un adverbe qui signifie "modulé de" ce qui ne t'avance pas vraiment : un exemple sera plus approprié, a=pi sur 4 modulo 2pi signifie que pi sur 4 est le reste de la division euclidienne (celle qu'on apprend au CM1) de a par 2pi, ou encore a=pi sur 4 + 2k*pi, k un entier.
Le multiplicateur correspond à la position du chiffre 1 à partir de la droite. Tous les produits qui en résultent sont ajoutés. Le résultat est ensuite divisé par 11. Le reste résultant est soustrait de 11 et les résultats dans le chiffre de contrôle.