Pour coder des nombres entiers positifs, il existe plusieurs méthodes : le binaire, l'hexadécimal, le code Gray, le décimal codé binaire et bien d'autres encore. La plus connue est certainement le binaire, secondée par l'hexadécimal, les autres étant plus anecdotiques.
Compter avec le système binaire
On compte 0, puis 1, et puis on n'a déjà plus de symboles de base. Donc on réutilise les symboles et on ajoute un bit à gauche : 2 en décimal s'écrit donc 10 en binaire, 3 s'écrit 11, 4 s'écrit 100, etc. En base 2, chaque bit à gauche de l'unité représente une puissance de 2.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul.
1) Codage d'un entier relatif sur 8 bits.
Le bit de poids le plus fort (à gauche) sert à coder le signe de l'entier. Il reste donc 7 bits pour coder le nombre soit des valeurs entre -128 et 127. Exemple : Codage de 89 sur 8 bits 01011001. On va représenter 89 par 256 (28) -89=167.
Un nombre entier est composé de chiffres qui correspondent à des rangs différents. De droite à gauche, on trouve : le chiffre du rang des unités, celui des dizaines, celui des centaines, celui des unités de mille, celui des dizaines de mille et celui des centaines de mille. 1 dizaine = 10 unités.
On utilise dix chiffres pour écrire un nombre entier : 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. 1243 est composé des chiffres 1, 2, 3 et 4. 2431 est également composé des chiffres 1, 2, 3 et 4 mais dans un ordre différent.
Comme vous pouvez le voir, le plus grand chiffre en hexadécimal est F, et il correspond à 15 en décimal et 1111 en binaire : F est donc encodé sur 4 bits (Fhex=1111bin, 4 chiffres binaires = 4 bits).
(0)16 = (0000)2 ; (1)16 = (0001)2 ; (2)16 = (0010)2 ; (3)16 = (0011)2 ; (4)16 = (0100)2 ; (5)16 = (0101)2 ; (6)16 = (0110)2 ; (7)16 = (0111)2 ; (8)16 = (1000)2 ; (9)16 = (1001)2 ; (A)16 = (1010)2 ; (B)16 = (1011)2 ; (C)16 = (1100)2 ; (D)16 = (1101)2 ; (E)16 = (1110)2 ; (F)16 = (1111)2 .
Pour le nombre 0, on utilise le caractère 0 et pour le nombre 1 le caractère 1. Mais pour le nombre 3 nous n'avons pas d'autres caractères, on reboucle alors tout en ajoutant une retenu. Pour le nombre 3 représenté en binaire, cela nous donne alors 10 (il faut lire ici 'Un Zéro' et non 'Dix').
Conversion binaire-décimal
Le premier rang (en partant de la droite) est le rang 0, le second est le 1, etc. Pour convertir le tout en décimal, on procède de la manière suivante : on multiplie par 20 la valeur du rang 0, par 21 la valeur du rang 1, par 22 la valeur du rang 2, [...], par 210 la valeur du rang 10, etc.
Conversion Décimal vers Hexadécimal
En hexadécimal la base B = 16, donc il faut maintenant diviser le nombre décimal successivement par 16. Les restes obtenus sont alors convertis dans leur équivalent hexadécimal.
Les débutants : Pour les langages les plus faciles à apprendre, même si vous n'avez aucune expérience, commencez par HTML/CSS, Go, Ruby, PHP ou Python. Les développeurs web : HTML, CSS et JavaScript sont une nécessité pour les développeurs frontend.
"01101010 01100101 00100000 01110100 00100111 01100001 01101001 01101101 01100101" signifie "je t'aime" en binaire.
En binaire, c'est-à-dire en base 2, il n'y a que deux chiffres : 0 et 1. On peut donc représenter chaque chiffre en utilisant seulement un doigt : - si le doigt est baissé, il représente 0, - si le doigt est levé, il représente 1.
Pour écrire tous les nombres entiers en base 10, on utilise 10 chiffres qui sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. La base 2 fait intervenir deux chiffres : 0 et 1. On se demande à quel nombre correspond l'écriture en base 2 suivante : $overline{10111}^2$.
La méthode la plus simple pour convertir un nombre décimal en binaire est la méthode euclidienne. On divise le décimal par 2, on note le reste de la division 1 ou 0. On réapplique le même procédé avec le quotient précédent, et on met de nouveau le reste de côté. On réitère la division jusqu'à ce que le quotient soit 0.
Pour poser une addition en base 4, on utilise exactement les mêmes règles que d'habitude, il faudra juste faire très attention en additionnant et en ajoutant les retenues. Exemple : le nombre 14 s'écrit 32 en base 4, et le nombre 11 s'écrit 23 en base 4. restante : 1+3+2=12, j'inscrit mon résultat.
On coupe l'octet en deux parties de 4 bits chacune (appelées "nibble") ce qui nous donne 1001 et1101. 1001 correspond à 9 en décimal soit 9 en hexa tandis que 1101 correspond à 13 en décimal soit D en hexa.
Le nombre binaire 10011011 possède huit chiffres, ce qui ne fait pas un multiple de trois, mais vous pouvez quand même le convertir en octal. Il suffit d'ajouter des zéros supplémentaires devant le dernier groupe jusqu'à ce que vous arriviez à trois chiffres.
Zéro. En français, le nombre zéro est considéré tantôt comme étant à la fois positif et négatif, tantôt comme n'étant ni positif, ni négatif.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Un nombre premier est un entier naturel qui admet seulement deux diviseurs distincts entiers et positifs : 1 et lui-même. Selon cette définition, 0 et 1 ne sont pas des nombres premiers puisque 0 est divisible par tous les entiers positifs et 1 n'est divisible que par un seul entier positif.