1. Pour faire un test t pour deux moyennes indépendantes, allez dans le menu Analyse, choisissez Comparer les moyennes, puis Test T pour échantillons indépendants. 2. Ensuite, vous insérez la ou les variables continues dans la boite Variable(s) à tester.
Cliquez sur la variable à tester, soit la VD (HeureNet), ensuite sur la variable dont nous voulons comparer les catégories, soit la VI (sexe). Puis cliquez sur la fonction « Définir des groupes » pour que SPSS « intègre » les deux modalités et précise la direction de la différence.
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Utilisez les courbes superposées pour comparer une ou plusieurs variables de l'axe des Y et une variable de l'axe des X. Les courbes superposées sont particulièrement recommandées lorsque la variable X est une variable de temps, car elles vous permettent comparer l'évolution de plusieurs variables dans le temps.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives. Le croisement de deux questions qualitatives produit un tableau que l'on désigne généralement par « tableau de contingence ».
La comparaison de deux variables quantitatives se fait en premier lieu graphiquement, en représentant l'ensemble des couples de valeurs. On peut ainsi représenter les valeurs du nombre d'heures passées devant la télévision selon l'âge. Le fait que des points sont superposés ne facilite pas la lecture du graphique.
Corrélation entre variables qualitatives
Si vous cherchez à étudier la relation entre deux ou plusieurs variables qualitatives, il faut utiliser le test de Khi-2 d'indépendance. Ce test a le même principe et les mêmes calculs que le test du Khi-2 de comparaison de pourcentages.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Si l'étude vise à comparer entre plus de deux groupes (3 ou plus), c'est une analyse de variance ou ANOVA qui est à appliquer. A condition, comme dans le cas du test T, que les données des échantillons suivent une distribution Normale et d'égalité des variances.
Les tests d'homogénéité permettent de décider si plusieurs sous-populations sont homogènes par rapport à un critère donné.
Utilisez le test t ou le test z pour un échantillon pour comparer la moyenne d'un échantillon à une référence. Faites-le dans Excel en utilisant le logiciel de statistique XLSTAT.
Le test de Student est un outil permettant de vérifier une hypothèse formulée sur un jeu de données. Il est principalement utilisé lorsque l'on sait que l'échantillon de données est supposé suivre une loi normale, comme lorsque l'on joue 100 fois de suite au pile ou face.
Le Test de Wilcoxon est un test de comparaison de deux séries d'une même variable quantitative (même unité de mesure). C'est un Test non paramétrique, utilisé quand les conditions de normalité de la variable ne sont pas valides.
Dans SPSS, allez dans le menu Analyse. Ensuite, sélectionnez Échelle, puis Analyse de la fiabilité. 2. Vous sélectionnez les variables constituant votre première échelle de mesure dans la boite de gauche et vous les transférez dans la boite Items à l'aide de la flèche.
Interpréter la valeur t
La valeur t est calculée en divisant la différence mesurée par la dispersion des données de l'échantillon. Plus l'amplitude de t est grande, plus cela plaide contre l'hypothèse nulle. Si la valeur t calculée est supérieure à la valeur t critique, l'hypothèse nulle est rejetée.
Un coefficient, c'est le nombre de fois qu'une note compte. Par exemple, si vous obtenez un 12 en français coefficient 5, c'est comme si vous aviez obtenu cinq 12/20. Plus le coefficient est élevé, plus il aura un impact sur la moyenne.
Les trois mesures de tendance centrale les plus courantes sont : Moyenne Il s'agit de la moyenne arithmétique, qui est calculée en ajoutant un groupe de nombres, puis en divisant par le nombre de ces nombres. Par exemple, la moyenne de 2, 3, 3, 5, 7 et 10 est égale à 30 divisé par 6, ce qui donne 5.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Le test U de Mann-Whitney est donc le pendant non paramétrique du test t pour échantillons indépendants ; il est soumis à des hypothèses moins strictes que le test t. Par conséquent, le test U de Mann-Whitney est toujours utilisé lorsque la condition de distribution normale du test t n'est pas remplie.
Le test du Khi2 peut être employé si tous les effectifs théoriques sont >5. Si au moins un effectif théorique est <5 alors, le test du Khi2 avec correction de Yates, ou bien le test exact de Fisher doivent être employés.
Le test de Bartlett peut être utilisé pour comparer deux variances ou plus. Ce test est sensible à la normalité des données. Autrement dit, si l'hypothèse de normalité des données semble fragile, on utilisera plutôt le test de Levene ou de Fisher.
La corrélation de Spearman utilise le rang des données pour mesurer la monotonie entre des variables ordinales ou continues. La corrélation de Pearson quant à elle détecte des relations linéaires entre des variables quantitatives avec des données suivant une distribution normale.
Les valeurs positives de r indiquent une corrélation positive lorsque les valeurs des deux variables tendent à augmenter ensemble. Les valeurs négatives de r indiquent une corrélation négative lorsque les valeurs d'une variable tend à augmenter et que les valeurs de l'autre variable diminuent.
Lorsque l'on cherche à déterminer si deux variables numériques sont liées, on parle de corrélation. Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.