L'inverse d'un nombre s'obtient en mettant ce nombre sur 1, en faisant donc "1 ÷ (nombre)". Vous le voyez, l'inverse d'un entier est une fraction qu'il faut laisser telle quelle. Il n'y a pas à faire de calcul pour obtenir un nombre décimal. Ainsi, l'inverse de 2 est : 1 ÷ 2 = 1/2.
Pour les fractions, l'inverse consiste à échanger le numérateur (le chiffre du haut) et le dénominateur (le chiffre du bas). Par exemple, l'inverse de 3/4 est 4/3, car (3/4) * (4/3) = 1.
des entiers relatifs, seuls 1 et –1 ont un inverse : eux-mêmes respectivement. des rationnels, l'inverse de 2 est 1⁄ 2 = 0,5 et l'inverse de 4 est 0,25. La fonction inverse est l'application qui à tout réel non nul associe son inverse.
Par exemple : l'opposé de 7 est égal à –7 car 7 + (–7) = 0. l'opposé de -0,3 est 0,3 car –0,3 + 0,3 = 0.
Exemples. L'élément opposé de 8 est –8, car : 8 + (–8) = 0. L'élément opposé de –6,5 est 6,5, car : 6,5 + (–6,5) = 0.
On peut en déduire que l'inverse de 5 est 0,2 et que l'inverse de 0,2 est 5. Un nombre et son inverse ont le même signe.
Pour obtenir l'opposé d'un nombre, il suffit donc de changer le signe de ce dernier. Par exemple l'opposé du nombre 3 est égal à -3. Inversement, l'opposé de -3 est égal à 3.
Il suffit « d'intervertir » le numérateur et le dénominateur, de la renverser en somme X Source de recherche ! Ainsi, l'inverse de 3/4 est 4/3.
Le développement décimal de l'inverse de 13 est 6-périodique (1/13 = 76 923/999 999 = 0,076 923 076 923… )
Exemple : L'inverse de 10 est 0,1 car 10x0,1 = 1! 2) L'opposé: L'opposé d'un nombre est ce même nombre avec le signe opposé! Exemple : L'opposé de 10 est -10!
Propriété : Deux nombres sont inverses l'un de l'autre si leur produit est égal à 1. Les nombres 3 et 0,333 sont-ils inverses l'un de l'autre ? Propriété : Diviser par un nombre, c'est multiplier par son inverse.
Inverse d'un nombre
Ainsi, l'inverse de 100 est 0,01.
En effet, 1000 × 0,001 = 1. 1 2 car 1 2 × 2 = 1 et 1000 est l'inverse de 0,001.
Deux nombres opposés sont deux nombres qui ont la même distance à 0 et des signes différents. (-6) et 6 sont des nombres opposés.
Algèbre de base
L'opposé d'une somme a + b est la somme des opposés de a et de b. L'opposé d'une différence a - b est la somme de b et de l'opposé de a.
Deux nombres sont inverses l' un de l' autre lorsque leur produit est égal à 1. Remarque : Seul 0 n' a pas d' inverse. D' après la règle des signes; deux nombres inverses sont toujours du même signe alors que deux nombres opposés et non nuls sont de signes contraires.
Cela nous permet de comprendre que la division est l'opération inverse de la multiplication.
L'opposé du nombre 0 est le nombre 0. Deux nombres opposés sont deux nombres de même valeur absolue et de signes contraires.
L'opposé de −7 est +7. L'inverse de −7 est +7.
Le quotient de deux nombres décimaux non nuls est également un nombre décimal. 6. L'inverse d'un nombre décimal peut être un nombre entier.
L'inverse d'un nombre relatif non nul a est le nombre qui multiplié par a donne 1. 5×0,2=1, donc l'inverse de 5 est 0,2. (−100)×(−0,01)=1, donc l'inverse de -100 est -0,01.
Inverser une fraction
Le numérateur devient le dénominateur, tandis que le dénominateur devient le numérateur. 3/7 est l'inverse de la fraction 7/3.
La fonction inverse du logarithme est l'exponentielle. Par exemple pour le logarithme naturel ou népérien généralement noté ln(x), on a e ^ ln(x) = x ou pour le logarithme en base 10, on a 10 ^ logdécimal(x) = x. Vous pouvez facilement le vérifier sur une calculatrice scientifique.
Quand je coupe un gâteau en quatre, chaque part représente 1/4 du gâteau (un quart).
Diviser deux fractions, c'est multiplier la première fraction par l'inverse de la deuxième. Il suffit donc de trouver l'inverse (permuter le numérateur et le dénominateur) de la seconde fraction puis de procéder comme pour une multiplication.