En fait, presque tout l'oxygène respirable de la Terre (près de 21 % de l'atmosphère terrestre) provient des océans. Il s'est accumulé dans l'atmosphère grâce à des micro-organismes marins (par exemple cyanobactéries et micro-algues planctoniques) capables de réaliser la photosynthèse.
Des chercheurs bernois et canadiens ont découvert comment l'oxygène est apparu sur Terre il y a 2,4 milliards d'années. Des changements dans la croûte terrestre sont en cause.
Bien que la présence d'un constituant privilégié dans l'air ait été entrevue dès le xviie siècle, la découverte de l'oxygène est communément attribuée à Joseph Priestley et Carl Wilhelm Scheele, qui l'obtinrent par décomposition thermique de l'oxyde de mercure et du nitrate de potassium (1771-1772).
Le dioxygène n'a pu atteindre l'atmosphère et s'y accumuler qu'à partir de 2,4 Ga (comme en témoignent les premières roches continentales oxydées dont les plus vieilles sont datées d'environ 2,3 Ga).
Les sources d'oxygène proposées pour l'oxygénothérapie à domicile sont les concentrateurs d'oxygène fixes et mobiles, les bouteilles d'oxygène gazeux et les réservoirs d'oxygène liquide. Toutes ces sources sont considérées comme équivalentes, du point de vue de l'efficacité clinique.
L'arbre aspire du carbone et rejette de l'oxygène. Contrairement à ce que l'on croit souvent, il ne crée par l'oxygène, il l'extrait du gaz carbonique et le replace là où, il y a 250 millions d'années, les premiers végétaux l'avaient émis. L'homme a besoin que les forêts filtrent son atmosphère.
Les arbres produisent l'oxygène en faisant une réaction appelée photosynthèse. Cette réaction chimique se passe dans les feuilles grâce à une substance : la chlorophylle. C'est elle qui donne leur couleur verte aux plantes.
D'après les hypothèses actuelles, ce n'est qu'à partir de 3 milliards d'années que l'oxygène commence à s'accumuler dans l'atmosphère principalement grâce à la multiplication des micro-organismes photosynthétiques et la modification de la composition des roches du manteau terrestre, moins riches en olivine - qui piège ...
En bref : les gaz volcaniques auraient formé les nuages. Ces derniers, remplis de condensation, auraient provoqué un « déluge primitif ». On parle de centaines voire de millions d'années d'intempéries qui auraient permis de former les océans tels que nous les connaissons aujourd'hui.
Une nouvelle étude révèle que le réchauffement climatique fait progressivement baisser le niveau d'oxygène dans de larges parties des profondeurs des océans, menaçant l'équilibre de l'écosystème marin - et de notre planète toute entière.
L'émergence de la vie dans les océans, il y a 3,5 milliards d'années, a permis l'apparition du dioxygène dans l'atmosphère grâce à des organismes photosynthétiques, les cyanobactéries. À partir de 2,4 milliards d'années, l'atmosphère s'est enrichie en dioxygène grâce aux échanges entre l'océan et l'atmosphère.
Une forêt ne peut donc produire de l'oxygène que si elle devient de plus en plus étendue. En réalité, les principaux systèmes produisant un surplus d'oxygène sont les forêts en formation, et les algues dans les mers, dans la mesure où leurs « produits » sont conservés.
1. Découverte de l'oxygène. L'oxygène fut découvert sous sa forme gazeuse (ou dioxygène) indépendamment par Carl Wilhelm Scheele en 1773 (mais il ne publia ses résultats qu'en 1777) et Joseph Priestley en 1774. L'histoire retient les noms des deux chimistes et la date de la première publication (1774).
De nombreuses hypothèses découlant de cette question. D'après certains spécialistes, la vie sur Terre aurait pour origine des molécules et des micro-organismes venant de notre système solaire, voire même d'autres galaxies. Ils seraient arrivés sur Terre avec les météorites, les comètes et les astéroïdes.
Le cycle de l'oxygène est donc un cycle court, attaché au cycle court du carbone organique. Au niveau des continents, la végétation, comme par exemple celle des grandes forêts, produit une certaine quantité d'oxygène grâce à l'activité de photosynthèse des végétaux.
Grâce à une réaction biochimique énergétique, les plantes vertes sont capables de produire de l'oxygène : c'est ce qu'on appelle la photosynthèse.
La première, la plus ancienne, avance que l'eau proviendrait du dégazage du manteau de la Terre pendant l'Hadéen, il y a plus de 4 milliards d'années. Les gaz volcaniques, riches en vapeur d'eau, se seraient alors refroidis et auraient formé les premiers nuages.
Le manteau terrestre a peu à peu absorbé l'eau des océans, permettant l'émergence des continents et de la vie sur Terre.
L'océan primitif est le premier océan qui s'est formé sur la Terre, il y a quatre milliards d'années. Il est né à la fois de la condensation et de la précipitation de la vapeur d'eau expulsée par les volcans, lors du dégazage de la planète, et des apports extraterrestres d'eau par les comètes et les météorites.
Lorsque le gaz oxygène n'est pas manipulé correctement, l'atmosphère ambiante devient enrichi ou appauvri en oxygène Cette concentration de gaz peut être à l'origine de nombreux incidents liés à un danger d'hypoxie, d'hyperoxie, d'incendie (brûlures, blessures graves, accidents mortels) voire même dans les cas plus ...
L'atmosphère primitive présente une forte concentration en dioxyde de carbone (60 à 70 %) issu du dégazage volcanique. En précipitant, la vapeur d'eau a entraîné le CO2 atmosphérique qui s'est retrouvé dissout dans les océans.
La toxicité de l'oxygène, causée par un apport excessif ou inadéquat en oxygène, peut causer de graves lésions aux poumons et à d'autres organes. Des concentrations élevées d'oxygène administrées sur une longue période peuvent intensifier la formation de radicaux libres et occasionner des dommages aux poumons.
Les arbres sont indispensables à l'équilibre de la nature : sans eux, on ne pourrait tout simplement pas vivre ! Pour les préserver, il existe même une Journée internationale des forêts, le 21 mars. L'occasion pour 1jour1actu de t'expliquer en vidéo comment les arbres nous aident à respirer.
Dans l'espace, il n'y a rien du tout, ni atmosphère ni oxygène. Personne ne peut donc y respirer. C'est pourquoi les astronautes qui travaillent à l'extérieur de la Station Spatiale Internationale doivent revêtir un scaphandre dans lequel ils reçoivent de l'air. Sur la Lune, il n'y a pas d'atmosphère.
Son plus grand superpouvoir, c'est la photosynthèse. Ce processus chimique permet à l'arbre de transformer le gaz carbonique de l'air en oxygène. Le gaz carbonique, ou CO2, émis par les activités humaines, est l'un des grands responsables du changement climatique. Grâce à la photosynthèse, les arbres piègent le CO2.