Si x1 et x2 sont les racines d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x1)(x − x2). Si x0 est l'unique racine d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x0)2.
Méthode 1 : en connaissant une racine a du polynome p (possiblement une racine évidente), alors le polynome peut se factoriser par (x−a) , soit p=(x−a)⋅q(x) p = ( x − a ) ⋅ q ( x ) avec q(x) un polynôme de degré 2 (méthode de factorisation ci-dessus).
Recherche de racine(s) et signe d'un polynôme : Un polynôme du second degré P(x) = ax² + bx + c admet au plus deux racines. Le nombre exact de ses racines est déterminé par le signe d'un expression notée Δ qu'on appelle le discriminant. Δ = b² - 4ac.
Pour pouvoir résoudre une telle équation, il faut tout d'abord calculer le discriminant Δ. On le calcule. Ensuite, selon le résultat, on va pouvoir connaître le nombre de solutions qu'il y a, et les trouver s'il y en a. Si Δ < 0 , rien de plus simple : il n'y a pas de solution.
Définition : Une équation du second degré est une équation de la forme ax2 + bx + c = 0 où a, b et c sont des réels avec a ≠ 0. Une solution de cette équation s'appelle une racine du trinôme ax2 + bx + c . Exemple : L'équation 3x2 − 6x − 2 = 0 est une équation du second degré.
Si un polynôme P de degré 3 admet une racine réelle α , alors ce polynôme est factorisable par (x −α). on a alors : P(x) = (x −α)×Q(x) où Q(x) est un polynôme de degré 2. Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1.
4x² -25 =(2x)² – 5² = (2x – 5)(2x +5) , 4x² +20x +25 = (2x +5)², 4x²-20x +25= (2x-5)²
Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit. La formule ci-dessus permet de factoriser une différence de deux carrés. Par exemple, x²-25 = x²-5² = (x + 5)(x - 5).
Si x1 et x2 sont les racines d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x1)(x − x2). Si x0 est l'unique racine d'un polynôme du second degré ax2 + bx + c, alors il se factorise sous la forme a(x − x0)2.
Pour passer de la forme factorisée à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de degré 2 sous la forme factorisée: f(x)=4(x−2)(x+7) f ( x ) = 4 ( x − 2 ) ( x + 7 ) .
Exemple : résoudre ( 5x + 35 ) ( 3x –6 ) = 0
- Exemple 1 : x² + 6x + 9 = 0 est une équation du second degré (x est au carré). Pour résoudre, il faut factoriser. On remarque que l'expression x²+6x-9 est un produit remarquable du type (a+b)².
Comme f est un polynôme du quatrième degré alors g en est un du troisième. Donc g est de la forme : g(x) = a.x3 + b.x2 + c.x + d Reste à déterminer les coefficients a, b, c et d. Développons le second membre de cette égalité.
Pour trouver une racine évident en fait, vous essayer avec des nombres de base comme 1, -1, 2, 3, etc. Il faut maintenant trouver ce R(x) en effectuant une division polynomiale de Q par (x + 1). Donc : R(x) = x2 - x - 6 et P(x) = (x + 1)(x + 1)(x2 - x - 6).
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Définition : Une expression factorisée est formée de facteurs. Exemple : Dans le produit 3×4, 3 et 4 sont les facteurs.
Développer c'est transformer un produit en somme. Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérales des calculs possibles. On peut utiliser la distributivé de la multiplication.
x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0. On a alors : x0 = −b / (2a).
Théorème 2 (factorisation)
ax² + bx + c = a(x – x1)(x - x2). Si = 0, le trinôme a une seule racine x0 et admet la factorisation ax² + bx + c = a(x – x0)². On dit alors que x0 est une racine double. Si < 0, le trinôme n'a pas de racine et ne peut pas être factorisé.
Calcul du discriminant : ∆ = b2 −4ac = ( √2)2 −4(1)(1) = −2. Le discriminant est strictement négatif, la règle est donc "toujours du signe de a", c'est à dire toujours positif car a = 1.