Dans un triangle quelconque, relation qui permet d'établir que le carré d'un côté est égal à la somme des carrés des deux autres côtés moins deux fois le produit de ces côtés par le cosinus de l'angle qu'ils forment. Dans le triangle ABC ci-dessous, la loi du cosinus prend les trois formes suivantes : a2=b2+c2–2bccosα
La loi des cosinus généralise le théorème de Pythagore, puisqu'elle permet d'énoncer que l'angle γ est droit (autrement dit cos γ = 0) si et seulement si c2 = a2 + b2.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
On appelle formule d'Al-Kashi, ou loi des cosinus, ou encore théorème de Pythagore généralisé l'égalité suivante, valable dans tout triangle ABC A B C , qui relie la longueur des côtés en utilisant le cosinus d'un des angles du triangle : a2=b2+c2−2b⋅ccos(ˆA).
Dans un triangle quelconque, relation qui permet d'établir que le carré d'un côté est égal à la somme des carrés des deux autres côtés moins deux fois le produit de ces côtés par le cosinus de l'angle qu'ils forment. Dans le triangle ABC ci-dessous, la loi du cosinus prend les trois formes suivantes : a2=b2+c2–2bccosα
Formules fondamentales :
sin² x + cos² x = 1.
Les rapports trigonométriques nous disent que le sinus de l'angle 𝜃 est égal au côté opposé sur l'hypoténuse. Le cosinus de l'angle 𝜃 est égal au côté adjacent sur l'hypoténuse. Et la tangente de l'angle 𝜃 est égal au côté opposé sur le côté adjacent. Une façon de s'en souvenir est d'utiliser l'acronyme SOHCAHTOA.
On utilise cette loi quand on connait la mesure d'un angle et celle de son côté opposé ainsi que n'importe quelle autre valeur de côté (à gauche) ou d'angle (à droite) du triangle. En bref, il faut une paire (côté, angle) qui est complète.
(ou sur des calculatrices plus anciennes : entrer la mesure de l'angle puis appuyez sur COS). Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter.
Nous voyons que le cosinus de 135 degrés est égal au cosinus de 225 degrés. Ceci est égal à moins cosinus 45 degrés.
Ainsi, on en déduit l'égalité suivante. sinx=cos(x−h)sinx=cos(x−π2)Cette même égalité est utilisée lorsqu'on travaille avec les identités trigonométriques.
Le cosinus d'un angle aigu dans un triangle rectangle. Le cosinus d'un angle aigu dans un triangle rectangle se calcule à partir du rapport des longueurs du côté adjacent à l'angle et de l'hypoténuse du triangle. Il permet de calculer des longueurs de côtés ou des mesures d'angles.
Le sinus de 𝐴 moins 𝐵 est égal à sin 𝐴 cos 𝐵 moins cos 𝐴 sin 𝐵. Nous pouvons donc réécrire sin 180 moins 𝑥 comme sin 180 multiplié par cos 𝑥 moins cos 180 multiplié par sin 𝑥 Nous savons que le sinus de 180 degrés est égal à zéro. Le cos de 180 degrés est égal à moins un. Zéro multiplié par cos 𝑥 est égal à zéro.
Alors n'oubliez pas SOH CAH TOA. Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Calcul du sinus
On veut obtenir une valeur approchée du sinus d'un angle de 50°. On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près).
75 degrés est simplement 75. Et puis quatre divisé par 60 égale 0,06666. Et 12 divisé par 3600 égale 0,00333. Donc, en ajoutant ces chiffres entre parenthèses, on obtient sinus 75.06999.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Définition : Formules trigonométriques
Par exemple, si on connaît la mesure d'un angle 𝜃 et la longueur de son côté adjacent A, et que l'on souhaite calculer la longueur du côté opposé O, on utilise la formule trigonométrique t a n O A 𝜃 = pour obtenir O A t a n = 𝜃 .
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Sinus = côté opposé / hypoténuse.