Une variable statistique est quantitative si ses valeurs sont des nombres sur lesquels des opérations arithmétiques telles que somme, moyenne, ... ont un sens. Caractère statistique (ou variables statistiques) : C'est ce qui est observé ou mesuré sur les individus d'une population statistique.
On distingue divers types de variables selon la nature des données. Ainsi, une variable peut être qualitative ou quantitative; une variable qualitative peut être nominale ou ordinale, alors qu'une variable quantitative peut être continue ou discrète.
Les variables quantitatives correspondent à des informations que l'on peut mesurer, compter. Cela peut être par exemple : la taille, le poids, l'âge, le nombre d'enfants, etc. Les variables qualitatives correspondent à des informations que l'on ne peut pas mesurer, comme le sexe ou la couleur des cheveux.
Les variables sont classées en deux grands groupes Variables quantitatives sont caractérisées par des valeurs numériques tel que poids ou la taille. Variables qualitatives : les valeurs sont des qualités non numériques (le sexe, la couleur des yeux) ou des valeurs numériques réparties en classes.
On distingue ainsi classiquement trois types de caractères observables, ou encore de variables : les variables nominales, les variables ordinales et les variables métriques.
Une variable discrète est toujours numérique. Par exemple, le nombre de plaintes de clients ou le nombre de défauts. Les variables continues sont des variables numériques ayant un nombre infini de valeurs entre deux valeurs. Une variable continue peut être numérique ou il peut s'agir de données de date/d'heure.
Il existe deux principaux types de variables quantitatives, à savoir les variables discrètes et les variables continues.
L'analyse d'une variable commence par son tri à plat qui est en fait le tableau de la distribution de ses données triées selon ses différentes valeurs : cela consiste tout simplement à dénombrer les résultats obtenus.
Description d'une variable
La description d'une variable qualitative consiste à présenter les effectifs, c'est-à-dire le nombre d'individus de l'échantillon pour chaque modalité de la variable, et les fré- quences, c'est-à-dire la proportion des réponses associées à chaque modalité de la variable étudiée.
5.3.2 Quantitatif à qualitatif
Si une variable numérique contient en réalité un petit nombre de valeurs différentes, il suffit de convertir la classe de l'objet de numeric vers factor ou ordered pour que R comprenne que la variable doit être traitée comme une variable qualitative.
Deux variables quantitatives sont corrélées si elles tendent à varier l'une en fonction de l'autre. On parle de corrélation positive si elles tendent à varier dans le même sens, de corrélation négative si elles tendent à varier en sens contraire.
l'on dit qu'un caractère est quantitatif discret lorsqu'il ne peut prendre qu'un nombre fini de valeurs numériques. L'on dit qu'un caractère est quantitatif continu lorsqu'il peut prendre une infinité de valeurs numériques et les exemples cités dans les livres sont le salaire d'une population ou la taille en cm.
Une variable indépendante est une variable dont la variation influence la valeur des variables dépendantes. La variable dépendante représente ce que l'on cherche à mesurer dans une expérience ou à évaluer dans une équation mathématique, alors que les variables indépendantes sont les éléments indispensables au calcul.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
La description d'une variable quantitative se base sur les statistiques suivantes : la moyenne, la médiane, la variance, l'écart-type, les quantiles. On peut aller plus loin en regardant l'asymétrie et l'aplatissement.
Les deux sont dites indépendantes lorsqu'il n'existe aucun lien statistique entre elles, dit autrement, la connaissance de X ne permet en aucune manière de se prononcer sur Y. On peut vérifier l'indépendance entre deux variables par un test χ2 (chi-2) d'indépendance ou χ2 de Pearson.
Le caractère d'une variable est un trait commun que partagent les éléments d'un même ensemble. Un caractère qualitatif est un trait qui prend la forme d'un mot, d'une expression ou d'un code (couleur, mot de passe, langue parlée, etc.). Il s'agit donc d'un trait non quantitatif.
Pour faire simple, une variable est significative avec un intervalle de confiance de 95% si son t-stat est supérieur à 1,96 en valeur absolue, ou bien si sa P-value est inférieure à 0,05.
Lorsque le caractère statistique prend un nombre fini raisonnable de valeurs (note, nombre d'enfants, nombre de pièces, secteur d'activité…), le caractère statistique est discret. Lorsque le caractère statistique peut prendre des valeurs trop nombreuses pour être détaillées (taille, superficie, salaire…)
Nominal: Utilisé pour classer les données en catégories ou groupes mutuellement exclusifs. Ordinal: Utilisé pour mesurer des variables dans un ordre naturel, comme l'évaluation ou le classement.
Étudier une série statistique correspond à l'étude d'un caractère (type de mesure) dans une population (ensemble étudié). Ici, la population désigne les joueurs d'une équipe de rugby et le caractère étudié est l'âge des joueurs. Les valeurs sont toutes les valeurs que peut prendre ce caractère.
Le rapport de corrélation est un indicateur statistique qui mesure l'intensité de la liaison entre une variable quantitative et une variable qualitative. la moyenne globale. Si le rapport est proche de 0, les deux variables ne sont pas liées. Si le rapport est proche de 1, les variables sont liées.
Une variable nominale est une variable qualitative dont les modalités ne sont pas ordonnées ; par exemple la couleur des yeux (bleus, verts, noirs, ...) Elles peuvent elles aussi être discrètes ou continues.
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.