On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≥ 0, alors f est croissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≤ 0, alors f est decroissante sur I.
Une fonction est monotone lorsqu'elle est croissante sur I ou lorsqu'elle est décroissante sur I . Étudier le sens de variation d'une fonction, c'est découper son ensemble de définition en intervalles sur lesquels la fonction est croissante ou décroissante.
On dit qu'une fonction f est monotone ssi elle est soit croissante soit décroissante. La fonction carré x ↦→ x2 n'est pas monotone : en effet, bien qu'elle soit ”tantôt croissante, tantôt décroissante”, elle n'est ni croissante ni décroissante.
Si une fonction f f f est définie et continue sur un intervalle [ a ; b ] [a; b ] [a;b] ; alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), il existe au moins un réel c c c compris entre a a a et b b b tel que f ( c ) = k f(c)=k f(c)=k.
Si le quotient est supérieur ou égal à 1 pour tout n, la suite est croissante. Si le quotient est inférieur ou égal à 1 pour tout n, la suite est décroissante. Si la position du quotient par rapport à 1 varie en fonction de la valeur de n, la suite n'est pas monotone.
Son sens de monotonie est donné par le signe de u1−u0 u 1 − u 0 . Si u1≥u0 u 1 ≥ u 0 , alors (un) est croissante, sinon (un) est décroissante. On conclut alors souvent de l'une des 2 façons suivantes : On arrive à prouver que (un) est bornée (parce que I l'est par exemple).
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.
Si l'on veut définir une fonction sur un intervalle et obtenir sa courbe il faut saisir : Fonction[expression en fonction de x, borne inf, borne sup]. Par exemple : si on tape dans la ligne de saisie la séquence Fonction[x²,- 4,3], on obtient le tracé de la parabole sur l'intervalle [-4 ;3].
On appelle intervalle l'ensemble des nombres réels compris entre deux réels positifs ou réels négatifs a et b, ou de la même façon l'ensemble des points de la droite dont la marque est entre a et b. Prenons pour exemple l'intervalle [4 ; 6]. Il désigne l'ensemble des réels x tels que 4 ≤ x et x ≤ 6.
Formellement, on écrira: ]a, b] = {x ∈ E | a < x ≤ b}.
Ainsi la fonction monotone définie par f : [ 0 , 1 ] → R , ∀ x ∈ [ 0 , 1 ] f ( x ) = 0 et f ( 1 ) = 1 est intégrable et son intégrale vaut de façon évidente .
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.
Rappel : Dire qu'une suite (Un) est croissante signifie que pour tout entier n, Un+1 Un. Dire qu'une suite (Un) est décroissante signifie que pour tout entier n, Un+1 Un.
(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Si [a,b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est décroissante dans l'intervalle [a,b] si et seulement si pour tout élément x1 et x2 de [a,b], si x1<x2, alors f(x1)≥f(x2).
Remarque : L'ensemble des nombres réels ℝ est un intervalle qui peut se noter ] − ∞ ; +∞[.
Un intervalle est un sous-ensemble de ℝ contenant tous les nombres réels compris entre deux nombres réels distincts et . Les bornes (extrémités) et peuvent être incluses ou exclues de l'intervalle.
Pour déterminer l'intersection de deux intervalles, on représente ces deux intervalles sur le même axe gradué et on repère les points du premier intervalle plus tous les points du second intervalle.
1. Qui est toujours sur le même ton, qui offre une grande uniformité de son, de rythme : Chant monotone. 2. Qui lasse par le manque de variété dans les intonations ou les inflexions : Acteur monotone.
Les fonctions constantes sont les seules fonctions simultanément croissantes et décroissantes. Toute fonction affine est monotone (strictement croissante si le taux d'accroissement est strictement positif, strictement décroissante si le taux d'accroissement est négatif).
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
− d'une relation qui permet de calculer à partir de chaque terme le terme suivant (On exprime un+1 en fonction de un pour tout entier naturel n). Cette relation est appelée relation de récurrence. Exemple Soit (un) la suite définie par u0 = 2 et pour tout entier naturel n par un+1 = −2un + 3. Calculer u1 et u2.
On dit que la suite u est bornée lorsqu'elle est à la fois majorée et minorée. Si la suite u est une suite croissante et majorée, alors elle converge. Si la suite u est décroissante et minorée, alors elle converge. Si la suite u est majorée par M et convergente vers le nombre L, alors L ≤ M.