On peut aussi donner un sens à deux parties orthogonales : A et B sont orthogonales si ⟨x,y⟩=0 ⟨ x , y ⟩ = 0 pour tout x∈A x ∈ A et tout y∈B y ∈ B . Pour X⊂E X ⊂ E , X⊥ est alors la plus grande partie de E orthogonale à X .
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemple : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG).
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Rappeler le cours. On rappelle que deux droites sont orthogonales si et seulement si leurs vecteurs directeurs sont orthogonaux, c'est-à-dire si le produit scalaire de ces deux vecteurs est nul.
Ces deux vecteurs→u et →v sont colinéaires si z→vz→u z v → z u → est un réel. Ils sont orthogonaux si ce quotient est un imaginaire pur. Le plan complexe est muni d'un repère orthonormal direct (O;→u;→v) ( O ; u → ; v → ) (…).
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Deux droites tracées dans un repère du plan sont parallèles si et seulement si leurs coefficients directeurs sont égaux. Elles sont perpendiculaires si et seulement si le produit de leurs coefficients directeurs est égal à -1.
Critère des pentes. Deux droites sont perpendiculaires si et seulement si le produit de leurs pentes est égal à -1.
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.
les vecteurs ont la même direction ou bien l'un des deux vecteurs est le vecteur nul 0 ; les vecteurs u et v sont colinéaires si et seulement si il existe un nombre réel k tel que u → = k v → \overrightarrow{u}=k\overrightarrow{v} u =kv .
Dans l'espace, deux droites sont orthogonales si elles sont chacune parallèles à des droites se coupant en angle droit ; deux perpendiculaires étant deux droites orthogonales et sécantes.
Deux droites de l'espace sont perpendiculaires si et seulement si elles se coupent en formant un angle droit. Dans l'espace, des droites, non parallèles, peuvent ne pas se couper. Si une des droites est parallèle à une droite perpendiculaire à l'autre alors les deux droites sont dites orthogonales.
Propriété: Si une droite est la médiatrice d'un segment alors elle est perpendiculaire à ce segment en son milieu. Propriété : Si un quadrilatère est un losange alors ses diagonales sont perpendiculaires. Propriété :Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles.
Deux droites sont perpendiculaires si elles se coupent en formant un angle de 90 degrés, c'est-à-dire un angle droit.
Notation : Le symbole «⊥» signifie « est perpendiculaire à ». Remarques : • Deux droites perpendiculaires sont sécantes. On utilise une équerre pour tracer une droite perpendiculaire à une autre.
La propriété de orthocentre d'un triangle.
On rappelle que deux droites (AB) et (CD) sont parallèles si et seulement si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}. Les deux droites (AB) et (CD) sont parallèles si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}.
1. Les droites (AC) et (BD) sont toutes les deux perpendiculaires à la droite (AB). Ainsi, on en déduit que les droites (AC) et (BD) sont parallèles entre elles.
on regarde si →AB et →AC sont colinéaires, à l'aide de la méthode "vecteurs colinéaires". Si →AB et →AC sont colinéaires, alors les points A, B, C sont alignés. Sinon les points A, B, C ne sont pas alignés.
Deux droites distinctes sont : - soit strictement parallèles lorsqu'elles sont coplanaires et que leur intersection est vide, - soit sécantes lorsqu'elles sont coplanaires et que leur intersection est un point, - soit non coplanaires.
Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.
Nécessairement, cela signifie qu'elles sont sécantes et donc coplanaires. DEFINITION: deux droites de l'espace sont orthogonales quand en un point de l'espace, leurs parallèles sont perpendiculaires.
Si M P, soit un point H' ∈ P, distinct de H, alors le vecteur est orthogonal au plan P donc à tout vecteur directeur du plan P, en particulier au vecteur .
Deux droites orthogonales ne sont pas nécessairement perpendiculaires, elles ne le sont que si elles sont coplanaires. Deux droites orthogonales à une même troisième ne sont pas nécessairement parallèles. Si deux droites sont parallèles, toute droite orthogonale à l'une est orthogonale à l'autre.