Définition 14 On dit qu'un polynôme P(X) est un polynôme annulateur de la matrice A ou de l'endomorphisme u si P(A)=0, ou si P(u)=0. Théorème 6.2 (de Cayley-Hamilton) Soit A ∈ Mn( ). Alors χA(A) = 0.
Si F est un sous-espace vectoriel stable par f alors, pour tout polynôme P ∈ [X], F est stable par P(f ). akXk, alors P(f ) est l'endomorphisme défini par P(f ) = a0 idE +a1 f + a2 f 2 + ··· + am f m.
Si F = E, f est appelée un endomorphisme. Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K.
Soit E un K -espace vectoriel de dimension finie n , soit u un endomorphisme de E , et soit P un polynôme de K[X] . On dit que P est un polynôme annulateur pour u si P(u)=0 P ( u ) = 0 .
En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc.
Pour montrer que φ induit sur Rn[X] un endomorphisme, il faut montrer la linéarité de φ et montrer que l'image de Rn[X] est incluse dans Rn[X]. Linéarité de φ Soient P et Q deux polynômes de R[X] et λ ∈ R, on a : φ(P + λQ) = P + λQ − (P + λQ)′ = P + λQ − P′ − λQ′ = P − P′ + λ (Q − Q′) .
Les endomorphismes f et fa,b sont égaux sur une base donc égaux sur l'espace ℂ entier. fa,b(fa,b(z))=(a2+|b|2)z+2Re(a)bˉz. L'endomorphisme fa,b est donc une symétrie si, et seulement si, {a2+|b|2=12Re(a)b=0.
Un polynôme, en algèbre générale, à une indéterminée sur un anneau unitaire est une expression de la forme : où X est un symbole appelé « indéterminée du polynôme », supposé être distinct de tout élément de l'anneau, les coefficients ai sont dans l'anneau et n est un entier naturel.
Pour montrer qu'un endomorphisme f ∈ L(E) est bijective, il suffit de montrer que f est injectif (en montrant par exemple que Ker(f) = {0E}) ou que f est surjectif (en montrant Im(f) = F).
Polynômes annulateurs. — Un polynôme non nul q de K[x] est dit annulateur d'une matrice A de Mn(K), si la matrice q(A) est nulle ; on dit aussi que A est racine du polynôme q.
Soit u∈L(E) u ∈ L ( E ) . Alors : L'endomorphisme u est un projecteur de E si et seulement si u2=u u 2 = u . L'endomorphisme u est une symétrie de E si et seulement si u2=IdE u 2 = I d E .
Sur un corps de caractéristique nulle, un endomorphisme u d'un espace de dimension n est nilpotent si et seulement si pour tout entier p compris entre 1 et n, up possède une trace nulle. Cela résulte des identités de Newton.
On appelle noyau de A, et on note Ker (A), le noyau de l'endomorphisme canoniquement associé à A, c'est à dire sous-espace vectoriel de Mn,1(R) défini par : Ker (A) = {X ∈ Mn,1(R) | AX = 0}. Le rang d'une matrice est alors égale au rang de la famille de vecteurs constituée de ses colonnes.
On calcule le discriminant Δ = b2 – 4ac de la fonction polynôme f définie par f(x) = ax2 + bx + c. Étudier le signe du discriminant Δ. Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
Soit \(f\) une application linéaire de \(E\) dans lui-même. On appelle polynôme annulateur de \(f\) un polynôme non nul appartenant à \(\mathbf K[X]\) tel que \(P(f)=0\).
Définition 5 Le polynome minimal d'une matrice A est un polynôme M de degré minimal tel que M(A) = 0 et de coefficient dominant égal à 1. Un tel polynome divise tous les polynomes tels que P(A) = 0, il divise le polynome caractéristique de A et il a les mêmes racines que le polynome caractéristique.
Un endomorphisme est bijectif lorsqu'il est à la fois injectif et surjectif. Cette définition de la bijectivité comme la conjonction de l'injectivité et de la surjectivité n'est pas spécifique aux endomorphismes.
On considère Mn(R) muni du produit scalaire 〈A,B〉 = Tr(tAB). On vérifie que ϕ : M ∈ Mn(R) → tM ∈ Mn(R) est un endomorphisme symétrique.
Si pour chaque valeur propre, la dimension du sous-espace propre est égale à la multiplicité de la valeur propre comme racine de CA , alors la matrice est diagonalisable, et une base de vecteurs propres est donnée en prenant la réunion des bases trouvées pour chaque sous-espace propre.
Une fonction polynôme (réelle) P est une combinaison linéaire de fonctions puissances, c'est-à-dire qu'il existe n ∈ N et ( a0 , … , a n ) ∈ R n +1 tel que pour tout x ∈ R, P ( x ) = ∑ k =0 n a k x k = a0 + a1 x + ⋯ + a n x n . Dans ce cas, elle est dite de degré n si a n ≠ 0.
Pour le degré du polynôme nul on pose par convention deg(0) = −∞. – Un polynôme de la forme P = a0 avec a0 ∈ K est appelé un polynôme constant. Si a0 = 0, son degré est 0.
De la même façon, on dit que polynômes P 1 , P 2 , . . . , P n sont premiers entre eux dans leur ensemble si leur PGCD est égal à 1.
— L'endomorphisme u est cyclique si et seulement si E est un espace cyclique. — Si F est cyclique, alors πu|F = χu|F . Proposition 2.3 (Cayley–Hamilton). Soit u ∈ L(E).
Un endomorphisme d'un espace euclidien ou hermitien est autoadjoint si et seulement s'il existe une base orthonormale de vecteurs propres, avec valeurs propres toutes réelles. Une matrice carrée complexe A est autoadjointe si et seulement s'il existe une matrice unitaire U telle que U.A.U-1 soit diagonale et réelle.
On dit que u est nilpotent s'il existe un entier n≥1 n ≥ 1 tel que un=0 u n = 0 . Le plus petit entier n qui convient est appelé indice de nilpotence de u . L'indice de nilpotence de u est aussi son indice en tant qu'endomorphisme de E, c'est-à-dire le plus petit entier n tel que ker(u)=ker(un+1).