Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.
1. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. 2. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
Quelle propriété permet d'affirmer que les droites BC et AB sont perpendiculaires ? La propriété de orthocentre d'un triangle.
Si une droite passe par un sommet et le centre de gravité d'un triangle, alors c'est une médiane, elle coupe le côté opposé en son milieu. Si une droite passe par un sommet et l'orthocentre d'un triangle, alors c'est une hauteur, elle est perpendiculaire au côté opposé.
pour démontrer que deux droites (AB) et (CD) sont perpendiculaires, on peut démontrer que arg( zD – zC zB – zA ) = π 2 ( π), c'est- à-dire que zD – zC zB – zA est imaginaire pur. 2°) Ecriture complexe d'une transformation géométrique.
Les vecteurs perpendiculaires (orthogonaux)
Pour déterminer si deux vecteurs sont perpendiculaires, on peut effectuer le produit scalaire de ceux-ci. En résumé, le produit scalaire de deux vecteurs orthogonaux donne toujours un résultat nul.
Un triangle rectangle
Le côté opposé à cet angle droit est appelé l'hypoténuse. Les deux autres côtés sont les cathètes. Propriété : Si un triangle est rectangle, alors les deux cotés de l'angle droit sont perpendiculaires.
Le produit des pentes de deux droites perpendiculaires égal -1. Pour trouver facilement la pente d'une droite perpendiculaire, on prend l'opposé de l'inverse de la pente de la première droite.
Si une droite passe par un sommet et l'orthocentre d'un triangles alors c'est une hauteur, elle est perpendiculaire au côté du triangle opposé à ce sommet.
Si une droite passe par un sommet et le centre de gravité d'un triangle, alors c'est une médiane, elle coupe le côté opposé en son milieu. Si une droite passe par un sommet et l'orthocentre d'un triangle, alors c'est une hauteur, elle est perpendiculaire au côté opposé.
Les vecteurs perpendiculaires (orthogonaux)
Pour déterminer si deux vecteurs sont perpendiculaires, on peut effectuer le produit scalaire de ceux-ci. En résumé, le produit scalaire de deux vecteurs orthogonaux donne toujours un résultat nul.
Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
Si deux droites parallèles coupées par une sécantes forment deux angles correspondants, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles correspondants de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.
Définition. Deux vecteurs sont dits orthogonaux si leurs directions sont perpendiculaires. Exemple : Sur le schéma ci-dessous, AB est un représentant du vecteur u et AC est un représentant du vecteur v . Comme les droites (AB) et (AC) sont perpendiculaires, les vecteurs u et v sont orthogonaux.
- par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Pour déterminer une équation cartésienne d'un plan passant par A et de vecteur normal \vec{n}, on peut : donner la forme générale de l'équation : ax + by + cz + d = 0 ; remplacer les coefficients a, b, c par les coordonnées du vecteur \vec{n} ; déterminer ensuite la valeur de d à l'aide des coordonnées du point A.
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemple : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG).
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.
Deux vecteurs sont orthogonaux si leur produit scalaire est nul. C'est évident quand on se souvient de la formule du cosinus (si le cosinus de deux vecteurs est nul, c'est que ceux-ci sont orthogonaux).
Deux droites (d) et (d') sont orthogonales si et seulement si leurs parallèles respectives passant par un même point sont perpendiculaires. Soit une droite (d) de vecteur directeur et un plan P. La droite (d) est orthogonale au plan P si le vecteur est orthogonal à tous les vecteurs du plan P.