Les vecteurs ⃑ 𝐴 et ⃑ 𝐵 sont parallèles si, et seulement si, ce sont des multiples scalaires l'un de l'autre : ⃑ 𝐴 = 𝑘 ⃑ 𝐵 , où 𝑘 est un nombre réel non nul.
Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
Les vecteurs ⃑ 𝐴 et ⃑ 𝐵 sont parallèles si, et seulement si, ce sont des multiples scalaires l'un de l'autre : ⃑ 𝐴 = 𝑘 ⃑ 𝐵 , où 𝑘 est un nombre réel non nul.
est non libre. Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.
On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires. Le vecteur nul →0 est colinéaire à tout vecteur.
Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul. Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.
Comment savoir si deux vecteurs sont orthogonaux ? Pour vérifier que deux vecteurs sont orthogonaux cela revient à calculer le produit scalaire entre les deux :- s'il est nul, ils sont orthogonaux (perpendiculaires),- s'il est différent de 0 ils ne sont pas orthogonaux.
Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs. En effet : α = π et cos π = - 1 .
Lorsque deux points A et B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Le déterminant est l'une des techniques qui permet de savoir si deux vecteurs sont colinéaires. S'ils se sont, le déterminant est nul. Et réciproquement, si le déterminant est nul les vecteurs sont colinéaires.
Si des points A(xA;yA), B(xB;yB), C(xC;yC) et D(xD;yD) sont alignés alors les droites AB, AC et AD sont confondues, si elles ne sont pas verticales alors elles doivent avoir le même coefficient directeur.
En géométrie euclidienne, l'alignement peut être caractérisé par un cas d'égalité de l'inégalité triangulaire : trois points sont alignés si l'un d'entre eux (que l'on peut noter B) appartient au segment joignant les deux autres (notés A et C), autrement dit si les distances satisfont la relation AB + BC = AC.
Si l'affixe d'un point est réelle, le point se situe sur l'axe des abscisses, donc son argument est égal à π forcément, l'angle est plat. Donc, les points A, B et C sont alignés. Retenez le résultat de cet exemple : Si l'affixe est réelle, alors l'argument est égal à π et les points sont alignés.
Si ce déterminant est nul, alors les trois points sont alignés. Si ce déterminant est non nul, alors les trois points sont non alignés. Et il convient de noter que la déclaration fonctionne dans les deux sens. Si le déterminant est nul, alors les points sont alignés.
Pour savoir si →u, →v et →w sont coplanaires:
On cherche si deux vecteurs sont colinéaires parmi les 3. Pour cela, on regarde si leurs coordonnées sont proportionnelles. - S'il y a 2 vecteurs colinéaires alors les 3 vecteurs sont toujours coplanaires. - Sinon on cherche 2 nombres a et b tels que →w=a→u+b→v.
Exemples : a) ( 2 ; – 3 ) et ( 10 ; – 15 ) sont colinéaires en effet 10 = 2 x 5 et –15 = –3 x 5 donc = 5 . c) (4 ; 5 ) et (8 ; –10 ) ne sont pas colinéaires en effet : ≠ 0 et ≠ 0 et s'il existe tel que = , alors 8 = x 4 donc = 2 et -10 = x 5 donc = -2 .
Trois vecteurs non nuls ⃗ ⃗ u ,v et ⃗ w sont coplanaires si et seulement leurs représentants de même origine A ont des extrémités B , C B, C B,C et D telles que A , B , C A, B, C A,B,C et D appartiennent à un même plan.
Si trois points appartiennent à la même droite, alors ils sont alignés.
pour démontrer que deux droites (AB) et (CD) sont perpendiculaires, on peut démontrer que arg( zD – zC zB – zA ) = π 2 ( π), c'est- à-dire que zD – zC zB – zA est imaginaire pur.
À tout nombre complexe z = a + i b ∈ C est associé le vecteur du plan de coordonnées . À tout vecteur du plan de coordonnées est associé le complexe z = a + i b appelé affixe du vecteur .
On peut trouver la première coordonnée du vecteur en calculant la différence entre les abscisses 𝑥 de l'extrémité et de l'origine ; la première coordonnée (ou de manière équivalente, la coordonnée en 𝑥 ) du vecteur ⃑ 𝑣 est − 7 − ( − 1 ) = − 6 .
La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide. Exemples : Calculons la norme du vecteur du plan de coordonnées (5;12).
La relation AB + BC = AC (qui concerne des distances) n'est vérifiée que si le point B est sur le segment [AC]; de manière générale on ne peut affirmer que AB + BC AC. si et seulement si ABCD est un parallélogramme. L'addition des vecteurs a des propriétés semblables à celles de l'addition des nombres réels.
1. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. 2. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
La propriété de orthocentre d'un triangle.