Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires. Le vecteur nul →0 est colinéaire à tout vecteur. Car quel que soit un vecteur →u, on peut toujours écrire: →0=0⋅→u. 3 points A, B, C sont alignés ⇔ →AB et →AC sont colinéaires.
Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
les vecteurs ont la même direction ou bien l'un des deux vecteurs est le vecteur nul 0 ; les vecteurs u et v sont colinéaires si et seulement si il existe un nombre réel k tel que u → = k v → \overrightarrow{u}=k\overrightarrow{v} u =kv .
Le vecteur est un vecteur directeur de la droite d'équation ax + by + c = 0. Soient (d) la droite de vecteur directeur et (d') la droite de vecteur directeur . Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul.
rappel . Deux droites sont coplanaires si et seulement si elle sont parallèles ou sécantes. Pour montrer que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni parallèles ni sécantes.
Remarques : Deux vecteurs non nuls sont colinéaires si et seulement s'ils ont la même direction. Le vecteur est colinéaire à tout vecteur du plan.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
Ces positions relatives sont par ailleurs caractéristiques des droites coplanaires : pour prouver que deux droites sont coplanaires il suffit de prouver qu'elles sont sécantes ou parallèles, et pour prouver que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni sécantes ni parallèles.
Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant à un même plan. Propriété : Soit , et trois vecteurs non coplanaires. Pour tout vecteur , il existe un unique triplet tel que .
Produit scalaire et vecteurs colinéaires
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
On appelle vecteur normal de (P) tout vecteur (non nul) orthogonal à tous les vecteurs directeurs du plan. Généralement, on peut obtenir un vecteur normal de deux façons différentes : en faisant le produit vectoriel de deux vecteurs directeurs non colinéaires du plan; à partir d'une équation cartésienne du plan.
Indice : En géométrie vectorielle, pour montrer que 4 points sont coplanaires, il faut montrer que trois des vecteurs qu'ils forment sont coplanaires. Pour ça, il faut exprimer un des trois vecteurs en fonction des deux autres.
Les vecteurs \vec{u}, \vec{v} et \vec{w} sont coplanaires si, et seulement si, il existe deux nombres réels \lambda et \mu tels que \vec{w} = \lambda \vec{u} + \mu \vec{v}. Vocabulaire On dit que \vec{w} est une combinaison linéaire de \vec{u} et \vec{v}.
Les vecteurs , et sont coplanaires (c'est-à-dire appartiennent à un même plan) s'il existe 4 points O, A, B, C d'un même plan tels que O est un point quelconque et que les points A, B et C définis par : , et . Soit , et trois vecteurs de l'espace, avec et non colinéaires.
Adjectif. (Géométrie) De même direction (se dit de vecteurs). Deux vecteurs colinéaires et de même module sont égaux ou opposés. Le vecteur nul est colinéaire à tout vecteur.
Deux droites sont parallèles si et seulement si elles sont coplanaires et non sécantes (c'est-à-dire confondues ou n'ayant aucun point commun). Attention : Dans l'espace, 2 droites non sécantes ne sont pas forcément parallèles !
(d) est sécante à (P) si et seulement si l'intersection de (d) et de (P) est un point. Pour montrer (d) est sécante à (P), il suffit de montrer que (d) n'est pas parallèle à (P). Autrement dit que vecteur directeur de (d) n'est pas orthogonal à vecteur normal de (P). Cas particulier : (d) est orthogonale à (P).
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .
Propriété : Deux vecteurs colinéaires non nuls ont la même direction. Conséquences géométriques : Dire que les vecteurs et sont colinéaires signifie que les points A, B, C sont alignés. Dire que les vecteurs non nuls et sont colinéaires signifie que les droites (AB) et (CD) sont parallèles.
Quand une force A et une force B agissent sur un objet dans le même sens (vecteurs colinéaires), la force résultante (C) est égale à A + B, dans la direction de A et B. Si la force A a plus d'intensité que la force B, la résultante sera plus proche du point d'application de A que du point d'application de B.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Si une droite (d) est orthogonale à deux droites sécantes du plan P, alors elle est orthogonale au plan P.
Deux droites (d) et (d') sont orthogonales si et seulement si leurs parallèles respectives passant par un même point sont perpendiculaires. Soit une droite (d) de vecteur directeur et un plan P. La droite (d) est orthogonale au plan P si le vecteur est orthogonal à tous les vecteurs du plan P.