Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.
Une fonction de ℂ dans ℂ peut être considérée comme une fonction de ℝ2 dans ℝ2. Elle est dérivable en a = x + iy si et seulement si elle est différentiable en (x, y) et si les différentielles partielles vérifient en ce point l'égalité
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Si une fonction est continue sur un intervalle, sa représentation graphique est en un seul morceau. Si la fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points.
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
Pour faire simple, le signe de la dérivée permet d'indiquer les variations de la fonction f. C'est ce qui représente la tangente à la fonction. Et la dérivée elle-même représente le coefficient directeur de la tangente à f au point.
Graphiquement, si la fonction est définie mais non dérivable en un point, on observe un point anguleux, c'est-à-dire que le tracé de la courbe est « cassé ». Pourquoi ? Parce que la tangente à gauche du point n'est pas la même qu'à droite.
Sa dérivée est toujours positive (ou nulle pour x = 0).
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).
Lorsque l'on définit une fonction, on l'écrit généralement sous la forme 𝑓 ∶ 𝑋 ⟶ 𝑌 . Cela signifie que pour tout élément 𝑥 ∈ 𝑋 , on associe par la fonction 𝑓 un élément 𝑦 ∈ 𝑌 . Nous écrivons cela comme 𝑓 ( 𝑥 ) = 𝑦 .
Re : Dire qu'une fct est définie sur R
Il faut simplement montrer que le dénominateur ne peut jamais être nul.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.
La réciproque de f, notée f−1, est une fonction si et seulement si aucune droite horizontale (parallèle à l'axe des x ) ne coupe le graphique de la fonction f en plus d'un point.
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
La fonction "valeur absolue" n'est pas dérivable en 0 : le nombre dérivé à droite vaut 1, alors que le nombre dérivé à gauche vaut -1. La fonction "valeur absolue" admet des primitives sur : les fonctions de la forme x x|x|+k, k .
Comme 8 est constant par rapport à x , la dérivée de 8x par rapport à x est 8ddx[1x] 8 d d x [ 1 x ] .
Voici un exemple. La fonction f(x) = x² est dérivable en 5 et son nombre dérivé vaut 10. Donc, la fonction carrée est dérivable en 5 et f '(5) = 10.
Donc n'est pas dérivable en 0. Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en 0.
Lorsqu'une fonction n'est pas linéaire, sa pente peut varier d'un point à l'autre. Il nous faut donc introduire la notion de dérivée qui permet d'obtenir la pente en tout point de ces fonctions non linéaires.
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal.