MÉTHODE 1. – Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Dire qu'une suite (Un) est décroissante signifie que pour tout entier n, Un+1 Un. On alors peut choisir l'une des deux méthodes suivantes : On calcule la différence Un+1 - Un : Si pour tout entier n, Un+1 - Un 0 alors la suite (Un) est croissante. Si pour tout entier n, Un+1 - Un 0 alors la suite (Un) est décroissante.
(un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.
Définitions : • Une suite est croissante si chaque terme est supérieur ou égal à son précédent : un+1 ≥ un ou: Une suite est décroissante si chaque terme est inférieur ou égal à son précédent : un+1 ≤ un ou: Une suite est monotone si elle est croissante ou si elle est décroissante.
Pour les suites arithmétiques, la relation de récurrence est donc très simple : on ajoute toujours le même nombre entre deux termes consécutifs. Autrement dit, u n + 1 = u n + r u_{n+1} = u_n + r un+1=un+r. Où r est un réel fixé qu'on appelle la raison de la suite.
▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante. ▶ Si un+1 un ⩽ 1, alors la suite (un) est décroissante. c) Si la suite (un) est définie explicitement : un = f (n), alors il suffit d'étudier les variations de la fonction f sur l'intervalle 0;+∞ .
Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.
Pour montrer qu'une suite n'est pas géométrique, il suffit de montrer que, sur les premiers termes par exemple, le quotient n'est pas constant.
Une fonction peut-elle être ni croissante ni décroissante ? - Quora. Oui, cela s'appelle une fonction non monotone. C'est une fonction qui ne croit ni ne décroit.
Une suite géométrique U de raison q et de premier terme U0 a pour terme général Un = U0 qn. On utilise les suites géométriques pour les placements à intérêts composés. Une suite arithmétique U de raison r et de premier terme U0 a pour terme général Un = U0 + nr.
f est strictement croissante si et seulement si pour tout x ∈ I, f ' (x) ≥ 0 et de plus l'ensemble des points où la dérivée f ' s'annule est d'intérieur vide (c'est-à-dire qu'il ne contient aucun intervalle non trivial).
La fonction 𝑓 est strictement croissante sur les intervalles où 𝑓 ′ ( 𝑥 ) > 0 et est strictement décroissante sur les intervalles où 𝑓 ′ ( 𝑥 ) < 0 . Par conséquent, 𝑓 est strictement croissante sur l'intervalle ] 0 ; 1 [ et est strictement décroissante sur les intervalles ] − ∞ ; 0 [ et ] 1 ; + ∞ [ .
Croissance : Une fonction est croissante sur un intervalle I si et seulement si : pour tout a et b de I, Si a < b alors f(a) < f(b). Décroissance : Une fonction est décroissante sur un intervalle I si et seulement si : pour tout a et b de I, Si a < b alors f(a) > f(b).
Pour déterminer la raison, nous pouvons calculer la différence entre deux termes consécutifs. Par exemple, la différence entre les deux premiers termes est : 1 9 − 1 2 = 7 . Ceci nous indique que la raison de cette suite arithmétique est égale à 7.
u p + ⋯ + u q = ( q − p + 1 ) × ( u p + u q ) 2 . On retient souvent cette formule sous la forme : up+⋯+uq=(nb de termes)×(premier terme+dernier terme)2. u p + ⋯ + u q = ( nb de termes ) × ( premier terme + dernier terme ) 2 .
Pour déterminer la raison d'une suite géométrique donnée, on divise n'importe quel terme de la suite par le terme précédent. Par exemple, on peut diviser le troisième terme par le deuxième terme ou le deuxième terme par le premier terme ; dans les deux cas, on trouve le même nombre si la suite est géométrique.
Si la raison est supérieure à 1, chaque terme sera plus grand que le précédent et la suite est croissante. Si la raison est de 1, chaque terme est égal au précédent : la suite est constante.
Si [a, b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est croissante dans l'intervalle [a, b] si et seulement si pour tout élément x1 et x2 de [a, b], si x1 < x2, alors f(x1) ≤ f(x2).
Une suite constante (cn) vérifie la relation de récurrence un+1 = 5un – 12 si et seulement si, pour tout entier naturel n, cn+1 = 5cn – 12. Puisque (cn) est constante, on a, pour tout entier naturel n, cn = c, où c est un réel, et cn+1 = c.
Une des méthodes les plus couramment utilisées pour déterminer le sens de variation d'une fonction est l'étude du signe de sa dérivée. ➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction.
On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≥ 0, alors f est croissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≤ 0, alors f est decroissante sur I.
Si deux suites (un) et (vn) sont équivalentes, alors elles ont le même signe à partir d'un certain rang. Si deux suites (un) et (vn) sont équivalentes, alors l'une converge si et seulement si l'autre converge. Dans ce cas, leurs limites sont égales.