Pour réduire des fractions au même dénominateur, il faut trouver le
La méthode la plus facile pour réduire une fraction est la division. Il s'agit de trouver un diviseur commun au numérateur et au dénominateur. On cherche à réduire la fraction 2432 pour trouver une fraction équivalente. Donc 1216 est une fraction équivalente à 2432.
Pour trouver un dénominateur commun, on peut simplement multiplier tous les dénominateurs ensemble. Par la suite, il s'agit de trouver les fractions équivalentes de chacune des fractions en utilisant le dénominateur commun obtenu. Par contre, le dénominateur commun ainsi obtenu est souvent d'une grande valeur.
Règle. Augmenter un nombre de x % revient à le multiplier par 1 + x. Diminuer un nombre de x % revient à le multiplier par 1 - x.
Quand une expression radicale apparait en dénominateur, il faut multiplier la fraction par un nombre qui supprimera le radical, en fait, une fraction dont le numérateur et le dénominateur sont identiques (= 1).
La rationalisation est la transformation en nombre rationnel du dénominateur irrationnel d'une expression écrite sous forme fractionnaire. Pour ce faire, il suffit de multiplier l'expression fractionnaire par la fraction-unité appropriée.
METTRE AU MÊME DÉNOMINATEUR
o On transforme chaque fraction pour une autre équivalente, par dénominateur le PPCM. Pour cela on multiplie les deux membres de chaque fraction par le nombre résultat de diviser le PPCM entre le dénominateur.
Pour développer ou simplifier (réduire) une fraction, vous devez respectivement multiplier et diviser le numérateur ainsi que le dénominateur de la fraction avec le même nombre.
Développer c'est transformer un produit en somme. Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérales des calculs possibles. On peut utiliser la distributivé de la multiplication.
Pour réduire des fractions au même dénominateur, il faut trouver le plus petit multiple commun aux dénominateurs. On distingue plusieurs cas : L'un des dénominateurs est multiple de l'autre. Exemple : \frac{4}{3} et \frac{7}{6} ; 6 = 3 × 2.
Le plus petit dénominateur commun à deux ou plusieurs fractions (PPCM) est le plus petit nombre naturel qui est à la fois multiple de chacun des dénominateurs de ces fractions.
Quand deux fractions ont le même dénominateur, on dit qu'elles ont un dénominateur commun. Pour pouvoir comparer deux fractions, les ajouter ou les soustraire, il est important qu'elles aient le même dénominateur.
Simplifier une fraction, c'est l'écrire avec un numérateur et un dénominateur plus petits. En pratique, cela revient à diviser le numérateur et le dénominateur par un même nombre. Simplifier . 15 et 75 sont divisibles par 5 car leurs chiffres des unités est 5.
Pour rendre irréductible une fraction, on simplifie le numérateur et le dénominateur par leur(s) diviseur(s) commun(s). Pour cela, on peut utiliser la décomposition en produits de facteurs premiers du numérateur et du dénominateur.
Pour simplifier une fraction, il faut diviser le numérateur et le dénominateur par le même nombre. Pour additionner ou soustraire deux ou plusieurs fractions, il faut impérativement que toutes aient le même dénominateur.
Une fraction est écrite sous forme simplifiée si le numérateur et le dénominateur n'ont aucun facteur commun. En d'autres mots, sous forme simplifiée, il est impossible de trouver un nombre qui soit diviseur à la fois du numérateur et du dénominateur.
Réduire une expression littérale, c'est regrouper les termes « semblables » et effectuer les calculs. Les termes « semblables » sont ici ceux qui ne contiennent que la variable a. B = 5a − 7b − 2ab.
Simplifier une fraction algébrique, c'est diviser le numérateur et le dénominateur par leurs facteurs communs. Factoriser, si cela est possible, le numérateur et le dénominateur. Supprimer les facteurs communs du numérateur et du dénominateur en remplaçant chacun d'eux par 1.
DÉNOMINATEUR, subst. masc. MATH. Partie d'une fraction qui indique en combien de parties l'unité est divisée.
Pour additioner (ou soustraire) des fractions qui n'ont pas le même dénominateur, on les met d'abord au même dénominateur puis on additione( ou on soustrait) les numérateurs entre eux et on garde les dénominateurs.
Fractions supérieures à 1.
Une fraction est supérieure à 1 quand son NUMERATEUR est plus grand que son DÉNOMINATEUR. 4, le numérateur est plus grand que 2, le dénominateur.
Pour faire disparaitre une racine carrée d'un dénominateur, il suffit de multiplier la fraction au numérateur et dénominateur par cette même racine carrée.
Pour rendre rationnel un dénominateur, il suffit de multiplier numérateur et dénominateur par la quantité conjuguée du dénominateur. c 2 − d ∈ Q , donc le nouveau dénominateur est un nombre rationnel.