H0 : la pièce n'est pas truquée – est acceptée si X ∈ [40, 60] – rejetée si X ∈ [40, 60] donc soit X < 40 ou X > 60 avec X « nombre de faces » obtenus en lançant 100 fois la pièce. Le risque d'erreur de première espèce est α = P(B(100, 1/2) ∈ [40, 60]).
Pour rejeter l'hypothèse nulle en faveur d'une hypothèse alternative, les données doivent être incompatibles avec l'hypothèse nulle et montrer une différence significative.
Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)
H0 : µ = µ0 H1 : µ = µ0. 2. Calcul de la statistique pertinente avec les valeurs de l'échantillon : Z0 = X − µ0 σ/ √ n .
Si H0 est vraie, alors la kinésithérapie est inefficace, le taux de guérison sera identique dans les 2 groupes. Si H1 est vraie, alors la kinésithérapie est efficace ou délétère, le taux de guérison sera différent entre les 2 groupes.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage.
Les tests d'homogénéité permettent de décider si plusieurs sous-populations sont homogènes par rapport à un critère donné.
On peut calculer la p-value correspondant à la valeur absolue de la statistique du t-test (|t|) pour les degrés de liberté (df) : df=n−1. Si la p-value est inférieure ou égale à 0,05, on peut conclure que la différence entre les deux échantillons appariés est significativement différente.
Donc le « p value » représente la probabilité de se tromper si on rejette H0. Par exemple, si p=0,2, cela signifie que si on rejette H0, on sait que ce jeu de données avait 20% de chance d'être obtenu alors que H0 était vraie.
Un test statistique permet d'évaluer à quel point les données vont à l'encontre d'une certaine hypothèse, l'hypothèse nulle aussi appelée H0. Sous H0, les données sont générées par le hasard. En d'autres termes, les processus contrôlés (manipulations expérimentales par exemple) n'ont pas d'influence sur les données.
on calcule la probabilité observée : p=kn. p = k n . on calcule l'écart du test : t=|p−p0|√p(1−p)√n.
Cela est généralement écrit sous la forme suivante : p≤0,05. Dans le calcul de la valeur p, nous commençons par supposer qu'il n'existe véritablement aucune différence vraie entre les deux traitements testés, par ex. le traitement nouveau mis en comparaison avec le traitement standard (l'hypothèse nulle).
Calculez le score Z à l'aide de la formule : Z = (x - moyenne) / écart type .
Pour vérifier qu'une équation est bien homogène, il faut s'assurer que les deux parties de l'équation utilisent la même dimension. En effet, si ces dernières sont différentes, votre équation sera automatiquement considérée fausse. On appelle cela une analyse dimensionnelle.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
L'évaluation de l'homogénéité se fait dès 2-3 semaines d'âge soit par le calcul du % d'homogénéité (% d'animaux compris dans la fourchette + ou – 10% du poids moyen) soit par le Coefficient de Variation (CV = écart type/moyenne) qui mesure plus précisément la dispersion des poids par rapport à la moyenne.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
une hypothèse doit être plausible, c'est-à-dire avoir un rapport assez étroit avec le phénomène qu'elle prétend expliquer ; une hypothèse ne doit pas servir à démontrer une vérité évidente ; elle doit plutôt laisser place à un certain degré d'incertitude ; une hypothèse doit être vérifiable.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Une valeur-p de 0,05 signifie qu'il y a une chance sur 20 qu'une hypothèse correcte soit rejetée plusieurs fois lors d'une multitude de tests (et n'indique pas, comme on le croit souvent, que la probabilité d'erreur sur un test unique est de 5 %).
Pour cela, il suffit de regarder le "t-stat" (t) ou bien la P-value (P>?t?), et comparer ces valeurs à des "valeurs seuils". Pour faire simple, une variable est significative avec un intervalle de confiance de 95% si son t-stat est supérieur à 1,96 en valeur absolue, ou bien si sa P-value est inférieure à 0,05.
Choisissez un seuil de signification plus élevé, tel que 0,10, si vous souhaitez augmenter le risque de déclarer qu'un effet est significatif sur le plan statistique alors qu'aucun effet n'existe et donc avoir une plus grande puissance de détection d'un effet important.
La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.