Un repère du plan est défini par trois points non alignés (O,I,J). Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées. On peut aussi définir un repère à l'aide des vecteurs. Si on pose le repère sera noté avec deux vecteurs non colinéaires.
Dans un plan muni d'un repère (O ; I ; J), la représentation graphique de la fonction affine x → ax + b est la droite d'équation : y = ax + b. a est le coefficient directeur de la droite et b est son ordonnée à l'origine.
Tracer le représentant du vecteur
On trace une flèche issue du premier point jusqu'au deuxième point. On trace une flèche issue du premier point jusqu'au deuxième point. On nomme le représentant du nom du vecteur.
Un repère de l'espace est défini par 4 points non coplanaires ou par un point (l'origine) et 3 vecteurs non coplanaires. Il peut être orthogonal si les trois vecteurs sont deux à deux orthogonaux. Il peut être orthonormal s'il est orthogonal et si les 3 vecteurs qui le définissent sont de même norme.
Repérage dans l'espace
Les éléments du triplet (x,y,z) sont respectivement appelés abscisse (x), ordonnée (y) et cote (z).
Géométriquement, on le représente par une flèche (ou un segment dirigé, la flèche indiquant le sens) reliant son origine à son extrémité. Le sens du vecteur est le sens du déplacement de son origine vers son extrémité et sa norme est la distance entre les deux points (ou la longueur du segment entre les deux points).
Le vecteur est représenté par un segment fléché. Le vent peut être représenté par des vecteurs car il possède une ou plusieurs directions, un ou plusieurs sens, une ou plusieurs intensités (valeurs) et des points d'application.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Le point étant considéré comme l'unique élément commun à deux droites sécantes, on représente habituellement le point par une croix (intersection de deux petits segments) plutôt que par le glyphe du même nom.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
En géométrie, un point est un objet sans taille ni dimension, souvent défini comme l'intersection de deux droites. Le point est défini uniquement par sa position. Il est souvent représenté par un minuscule point tracé à la pointe du stylo ou par une petite croix (un X) symbolisant l'intersection de deux droites.
Une fonction définie par une liste de valeurs numériques peut être représentée par un nuage de points, une courbe polygonale ou un diagramme en barres.
Lorsqu'une application affine est croissante, sa représentation graphique est une droite « montante » de la gauche vers la droite. Lorsqu'une application affine est décroissante sa représentation graphique est une droite « descendante » de la gauche vers la droite.
1) Tracer un repère (O;→i;→j) dans le plan. On prendra ||→i||=||→j||=1. 2) Tracer le vecteur →u dont les coordonnées sont →u(−3;2), puis le vecteur →v dont les coordonnées sont →v(3;3).
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 .
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
Un représentant du vecteur somme \overrightarrow{w} est la diagonale du parallélogramme ainsi créé. On peut alors tracer un représentant du vecteur somme \overrightarrow{w}, c'est la diagonale du parallélogramme ainsi créé.
Lorsque deux points A et B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Soit E un ensemble sur lequel est défini une relation d'équivalence R, et A une classe d'équivalence de R. R . Tout élément x de A est appelé représentant de la classe d'équivalence.
On appelle x l'abscisse de M et y son ordonnée. Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
Si vos animations sont planes, vous ne disposez que de deux dimensions, X et Y. C'est le cas d'une feuille de papier ou d'un écran. X représente l'axe horizontal (gauche/droite), et Y représente l'axe vertical (haut/bas). Les animateurs 3D bénéficient d'un troisième axe, Z, qui simule la profondeur.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.