Deux droites parallèles sont deux droites qui ne sont pas sécantes Exemple : Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites sont parallèles lorsqu'elles ne se coupent pas.
En mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours.
Le point d'intersection de deux droites distinctes est le point où elles se rencontrent ou se coupent. C'est le couple de valeurs de ? et ? où les droites se coupent sur le graphique et qui vérifie les équations des deux droites.
Droites perpendiculaires, parallèles, sécantes ou quelconques, donnons à nos enfants des astuces pour s'en souvenir !
Définition : Deux droites perpendiculaires sont deux droites qui se coupent en formant un angle droit.
Quand on trace deux droites dans le plan, trois cas sont possibles. Les deux droites se coupent en un point O ; on dit qu'elles sont sécantes en O. (d) et (d') sont sécantes en O. Les deux droites ont une infinité de points communs ; on dit qu'elles sont confondues.
V Les droites sécantes
Définition : On dit que deux droites qui se coupent (se croisent) sont des droites sécantes. Propriété : Quand deux droites sont sécantes, elles forment un point. Ce point est appelé point d'intersection.
L'intersection est commutative, c'est-à-dire que, pour des ensembles A et B quelconques, on a : A ∩ B = B ∩ A. L'union est distributive sur l'intersection, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a : A ∪ (B ∩ C) = (A ∪ B)
1. Endroit où deux lignes, deux routes, deux chemins se croisent : À l'intersection de la nationale et de la départementale. 2. En géométrie, lieu où des lignes, des surfaces, des volumes se rencontrent et se coupent : Point d'intersection.
P : Si deux droites sont symétriques par rapport à un point, alors elles sont parallèles. P : Si deux angles correspondants déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles.
Deux droites sont toujours soit sécantes, soit parallèles. Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
On dit que deux droites sont sécantes si elles ont un unique point commun. Pour étudier une courbe au voisinage d'un de ses points P, il est utile de considérer les sécantes issues de P, c'est-à-dire les droites passant par P et un autre point Q de la courbe.
[En parlant d'une droite, d'un plan] Qui coupe à angle droit. Perpendiculaire à (une autre droite, un autre plan). Ligne perpendiculaire à un plan (synon. normal, orthogonal).
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.
L'identification de droites perpendiculaires
Des droites perpendiculaires sont des droites sécantes qui se coupent à angle droit puisque la pente de l'une est l'opposée de l'inverse de la pente de l'autre. Deux droites perpendiculaires ont des pentes opposées et inverses.
Les intersections peuvent prendre plusieurs formes : Les intersections en forme de T ou Y : vous devez tourner à droite ou à gauche. Les intersections en forme de X : vous pouvez aller tout droit, à gauche ou à droite. Les intersections en forme d'étoile avec une multitude de directions possibles.
L'intersection (∩) de deux ensembles A et B s'exprime ainsi : A∩B={x∈Ω∣x∈A et x∈B} A ∩ B = { x ∈ Ω ∣ x ∈ A et x ∈ B } où Ω représente l'ensemble dans lequel se trouvent tous les éléments, c'est-à-dire l'univers des possibles.
L'union est commutative, c'est-à-dire que, pour des ensembles A et B quelconques, on a : A ∪ B = B ∪ A. L'intersection est distributive sur l'union, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Segments de droites de même direction. Des segments de droites parallèles ne pourront jamais se croiser, même si on les prolonge à l'infini.
Les parallèles qui ne se coupent pas, c'est de la géométrie euclidienne. C'est la géométrie plane que l'on apprend à l'école, et qui dit par exemple, que si on a une droite et un point extérieur à cette droite, alors il passe par ce point une droite (et une seule) parallèle à la droite de départ.
Remarques : Deux droites seront confondues si elles ont la même équation réduite. Deux droites seront strictement parallèles si elles ont le même coefficient directeur mais pas la même ordonnée à l'origine. Deux droites seront sécantes si elles n'ont pas le même coefficient directeur.
Deux droites du plan affine sont parallèles si et seulement si elles n'ont aucun point commun ou si elles sont confondues. Deux droites ayant un et un seul point commun sont dites sécantes.