Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle.
Le point de concours s'appelle le centre du cercle inscrit. Il est toujours à l'intérieur du triangle.
Les hauteurs A,B,C sont concourantes en un point h appelé orthocentre du triangle abc.
Propriété :les trois bissectrices se coupent en un point ,Le point s' appelle "centre du cercle inscrit ". Le point « I » est le centre du cercle inscrit dans le triangle..
Locution nominale
(Géométrie) Point d'intersection commun de plusieurs droites.
V Les droites sécantes
Définition : On dit que deux droites qui se coupent (se croisent) sont des droites sécantes. Propriété : Quand deux droites sont sécantes, elles forment un point. Ce point est appelé point d'intersection.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Définition. La bissectrice d'un angle le partage en deux secteurs angulaires superposables.
Les médiatrices des côtés d'un triangle sont concourantes. de [AB] et [BC] (elles sont sécantes car le triangle est non dégénéré). Le point O est sur la médiatrice de [AB] donc on a AO = BO. Comme O est aussi sur la médiatrice de [BC], on a aussi BO = CO.
On trace la droite passant perpendiculairement par le milieu de \left[ AC \right] ainsi que la droite passant perpendiculairement par le milieu du segment \left[ AB \right]. On obtient les trois médiatrices.
Placer la pointe sèche du compas sur le sommet de l'angle et tracer un arc qui coupe les deux côtés de l'angle. Placer la pointe sèche du compas sur une intersection de l'arc de cercle et d'un côté de l'angle. Tracer un nouvel arc dans l'ouverture de l'angle. Refaire l'opération à partir de l'autre intersection.
Cas du cercle inscrit.
Le point d'intersection est donc sur la bissectrice intérieure issue de C et plus exactement sur la demi-droite bissectrice du secteur angulaire (ACB). Le point d'intersection est alors le centre d'un cercle tangent aux trois côtés du triangle. C'est le cercle inscrit.
Le cercle d'Euler (1707-1783) passe par les neuf points suivants : – les trois milieux des côtés du triangle A' : B' et C' ; – les trois pieds des hauteurs hA; hB et hC ; – les trois points d'Euler eA; eB et eC ; milieux des segments [AH], [BH] et [CH] où H est l'orthocentre du triangle ABC.
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
Méthode avec un compas et une règle
Placer la pointe sèche du compas sur une extrémité du segment et tracer un cercle. Répéter l'étape 2 à partir de l'autre extrémité du segment. À l'aide d'une règle, tracer la droite qui relie les deux intersections des cercles. Cette droite est la médiatrice du segment.
Une médiatrice est une droite perpendiculaire à un segment qui passe par le milieu de ce même segment. La médiatrice se trouve généralement dans les figures planes, mais contrairement à la médiane, elle se trouve également sur des segments de droite.
Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la hauteur et la bissectrice.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Un cercle est l'ensemble de tous les points équidistants d'un point fixe, O. Le point O est le centre du cercle et le cercle passe par le point B. Un rayon est un segment qui rejoint le centre du cercle, O, à un point sur le cercle, B. Le segment OB est un rayon.
Le périmètre P d'un cercle de rayon r s'écrit : P = 2 × π × r.
Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle.