Propriétés de la médiatrice
On a donc : Remarque : Le point I du segment [AB] appartient à la médiatrice de [AB] et il est bien à la même distance de A et de B : Propriété 2 : Si un point est à égale distance des deux extrémités d'un segment, alors il est sur la médiatrice de ce segment.
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
La médiatrice d'un segment est la droite passant perpendiculairement par le milieu de celui-ci. Les médiatrices d'un triangle sont les médiatrices des côtés du triangle.
La médiatrice d'un segment est la droite qui coupe ce segment en son milieu perpendiculairement. Dans un triangle, les médiatrices sont concourantes en un point appelé centre du cercle circonscrit au triangle. La bissectrice d'un angle est la demi-droite qui partage cet angle en deux angles de même mesure.
Une médiatrice est une droite perpendiculaire à un segment qui passe par le milieu de ce même segment. La médiatrice se trouve généralement dans les figures planes, mais contrairement à la médiane, elle se trouve également sur des segments de droite.
Si un point M appartient à la médiatrice (d) d'un segment [AB] alors il est à égale distance de A et de B. On a : MA = MB. Si un point M est à égale distance de deux points A et B, alors M est sur la médiatrice de [AB].
On utilise pour cela la réciproque et la contraposée du théorème de Pythagore : Si AB² = AC² + BC² alors le triangle ABC est rectangle en C.
Les médianes d'un triangle sont concourantes (elles se coupent en un même point). Leur point d'intersection est le centre de gravité. Le centre de gravité est situé aux deux tiers d'une médiane en partant du sommet dont elle est issue.
Méthode avec un compas et une règle
Placer la pointe sèche du compas sur une extrémité du segment et tracer un cercle. Répéter l'étape 2 à partir de l'autre extrémité du segment. À l'aide d'une règle, tracer la droite qui relie les deux intersections des cercles. Cette droite est la médiatrice du segment.
La première utilise la définition de la médiatrice d'un segment : c'est une droite qui passe par le milieu du segment et qui est perpendiculaire au segment. Pour la construire, il faut : placer le milieu du segment avec la règle graduée ; tracer avec l'équerre la perpendiculaire au segment passant par le milieu.
On commence par tracer un cercle de centre C qui va couper la droite (D) en deux points A et B. Grâce à la construction précédente, on construit la médiatrice de [AB]. Comme C est à égale distance de A et B, C est sur cette médiatrice. Ainsi la médiatrice de [AB] est la droite perpendiculaire à (D) et passant par C.
Une médiane d'un triangle est un segment qui joint un sommet au milieu du côté opposé. Si deux points A et B sont symétriques par rapport à O, alors O est le milieu du segment [AB]. Si un quadrilatère est un parallélogramme (losange, rectangle, carré), alors ses diagonales ont le même milieu.
La médiatrice d'un segment de droite, délimité par deux points d'un plan, est une ligne qui coupe perpendiculairement (90°) le segment en deux parties égales. Pour trouver son équation, il vous faut trouver les coordonnées du milieu du segment, la pente entre ces deux points, puis l'opposée inverse de cette pente.
Définition : La segment [AB] est la partie de la droite qui a pour extrémités les points A et B. On ne peut pas prolonger le tracé d'un segment. Exemple : Définition : La demi-droite [AB) est la partie de la droite qui a pour origine le point A et qui passe par le point B.
Si un triangle est rectangle, alors la longueur de la médiane issue de l'angle droit est égale à la moitié de l'hypoténuse. Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.
Les médianes du quadrilatère sont les segments reliant les milieux des côtés opposés. Les médianes sont les diagonales du parallélogramme de Varignon, elles se coupent en leurs milieux.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure.
Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
La règle ne sert qu'à tracer le segment et sa médiatrice! Avec le compas, piquer la pointe sèche sur une des extrémités du segment. Ecarter les deux branches du compas de façon à ce que l'écartement soit plus grand que la moitié de la longueur du segment.
Médiane : droite joignant le sommet d'un triangle au milieu du côté opposé. Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Propriété : Si deux points sont symétriques par rapport à une droite alors cette droite est la médiatrice du segment d'extrémités ces deux points. Propriété : Si un point est équidistant des extrémités d'un segment alors il appartient à la médiatrice de ce segment.
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.