Les droites d'équations x = c et x = k sont parallèles. Les droites d'équations x = c et y = px + d sont sécantes. Les droites d'équations y = px + d et y = p'x + d' sont parallèles p = p', c'est-à-dire si et seulement si elles ont le même coefficient directeur.
Les droites parallèles à l'axe des ordonnées sont les droites qui admettent une équation du type x=k, où k est un réel quelconque. D'après le cours, on sait que deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont le même coefficient directeur.
î = 60° car î et â sont des angles alternes-internes. Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
On rappelle que deux droites (AB) et (CD) sont parallèles si et seulement si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}. Les deux droites (AB) et (CD) sont parallèles si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}.
Pour vérifier si des droites sont parallèles, il faut donc mesurer la distance qui les sépare en plusieurs endroits différents. Si cette distance ne change pas, les droites sont parallèles. Attention ! Cette distance se mesure toujours perpendiculairement aux deux droites tracées.
1. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. 2. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
On vérifie si des droites sont parallèles en mesurant leur écartement. Si l'écartement est constant alors les droites sont parallèles.
Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Théorème de Thalès (appliqué au triangle)
ABC est un triangle. M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
La démonstration du théorème de Thalès
Le théorème de Thalès repose sur les proportions des côtés homologues des triangles semblables. On le prouve en démontrant que △ABC∼△ADE △ A B C ∼ △ A D E à l'aide du cas de similitude AA. Soit les droites parallèles distinctes BC et DE, ainsi que les droites sécantes AB et AC.
Le théorème de Thalès permet d'obtenir l'égalité entre trois rapports de longueur. Ainsi, on peut s'en servir afin de déterminer des longueurs ou bien pour montrer que deux droites ne sont pas parallèles. Il s'utilise dans une configuration de triangles emboîtés ou bien en configuration « papillon ».
La réciproque du théorème de Thalès sert à montrer que deux droites sont parallèles.
En géométrie affine, deux droites sont dites parallèles si elles ont la même direction, c'est-à-dire si elles ont des vecteurs directeurs colinéaires. Toute droite étant parallèle à elle-même, lorsqu'on veut préciser que deux droites parallèles sont distinctes, on dit qu'elles sont strictement parallèles.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 2, car la droite coupe l'axe des ordonnées au point 2. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Pour déterminer l'équation réduite de la forme y = mx + p d'une droite (d) à partir des coordonnées de deux points A et B appartenant à (d) : calculer la valeur du coefficient directeur m à partir de la relation ; calculer la valeur de l'ordonnée à l'origine p en utilisant les coordonnées du point A ou B.
(BH) coupe (AC) en Q, (CH) coupe (AB) en P . Alors (BC) et (PQ) sont parallèles. Puisque A,I,H sont distincts et alignés, il existe un réel k nbon nul tel que vectHI = k vect HA. Déduisez-en que H est le barycentre de (A,-2k), (B,1) (C,1).
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Deux droites sont parallèles si elles n'ont aucun point en commun. Elles sont distinctes et ne se croiseront jamais. Deux droites sont sécantes si elles se croisent en un point, nommé point d'intersection.
La réciproque du théorème de Pythagore : Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des autres côtés alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté.
Les droites parallèles sont des droites qui vont dans la même direction. La distance entre elles est constante. Les parallèles ne se rencontrent jamais.
Droites parallèles
Si deux droites ne se croisent jamais, on dit que les droites sont parallèles.
Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. Si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre. Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles.
Comment démontrer une affirmation ? Pour démontrer une affirmation, nous devons utiliser un raisonnement mathématique. Des exemples sont le raisonnement par récurrence, le raisonnement déductif, le raisonnement par contre-exemple, le raisonnement par disjonction de cas et le raisonnement par l'absurde.